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Summary

Sequence weighting methods have been used to reduce redundancy and emphasize diversity in
multiple sequence alignment and searching applications. Each of these methods is based on a
notion of distance between a sequence and an ancestral or generalized sequence. We describe a
different approach, which bases weights on the diversity observed at each position in the
alignment, rather than on a sequence distance measure. These position-based weights make
minimal assumptions, are simple to compute, and perform well in comprehensive evaluations.

Redundancy is a common feature of sequence databanks, where a typical gene or protein
family is represented by a highly non-random sample of sequences. For example, an ancient
protein family might be represented by a few highly diverged microbial and invertebrate sequences
plus many mammalian sequences that form a closely related subgroup. This situation can be
detrimental in sequence alignment and searching applications, where it is usually desirable to
represent the diversity among related sequences. Since closely related sequences are largely
redundant, they provide less information in a multiple sequence alignment than their distant
cousins.

Sequence weighting methods have been introduced to compensate for over-representation
among multiply aligned sequences. Low weights are given to sequences that are redundant and
high weights to sequences that are diverged. Sequence weights can be applied in the construction
of a position-specific scoring matrix (PSSM), such as a profile (Gribskovet al., 1987), which is an
ordered set of vectors, each of which represents the frequencies of residues observed for a position
in a multiple alignment. By downweighting the contribution of redundant sequences to a PSSM, it
should be more sensitive to distant relationships. Recent empirical results have demonstrated the
value of sequence weights in increasing the sensitivity of protein sequence profiles (Thompsonet
al., 1994; Luthyet al., 1994).

While there is general agreement concerning the value of sequence weights, no consensus
has been reached as to which method to use. The current methods are of two general types, tree-
based and pairwise distance-based. Tree-based weights assume that sequences are related by an
evolutionary tree, and that a reasonably correct tree can be deduced from the available sequences
(Felsenstein, 1985). However, this need not be the case for alignments of short and distantly related
sequences, where root location can be uncertain. This uncertainty can adversely affect the ACL



tree-based method (Altschulet al., 1989) which upweights sequences close to the root. Uncertain
root placement can cause distantly related sequences to be downweighted, and this is undesirable.
For example, in the simple but non-trivial alignment of nitrogenase sequence segments shown in
Table 1A, the ACL method gives zero weight to the only sequence with F in position 2, thus
effectively discarding the contribution of this residue to a PSSM. To deal with the root problem,
branch-proportional weights were introduced (Thompsonet al., 1994). This method determines the
distance of each sequence from the root based on tree topology, with higher weights for sequences
that share fewer nodes with other sequences. This leads to upweighting of more distantly related
sequences, as desired (Table 1A). A concern with tree-based sequence weights in general is that
they depend upon the particular method used for determining evolutionary distances and tree
topology (e. g. Saitou & Nei, 1987).

Pairwise distance methods (Vingron & Sibbald, 1993) do not require that sequences are
related at all, and so issues such as topology and root placement are avoided. In a pairwise distance
method, every sequence is assumed to lie some distance away from every other sequence, or from
some generalized sequence (Vingron & Sibbald, 1993). The set of all pairwise distances for
aligned sequences can be represented as a distance matrix. Two distance matrices are shown in
Table 2 for the nitrogenase alignment. In the VA method (Vingron & Argos, 1989) the average
number of mismatches between a sequence and the other sequences provides a measure of its
distance from a hypothetical centroid. In the example, Sequence 1 differs from Sequences 2-4 at
an average of 2-1/3 positions. Normalizing this distance such that all four sequence weights add up
to 1 gives a VA weight of 0.269. While this method is simple and is easily calculated, it can lead
to weights that are not intuitive (Sibbald & Argos, 1990 and Table 1B).

A more elaborate pairwise distance method, Voronoi (Sibbald & Argos, 1990),
supplements the observed sequences with all pseudosequences that can be derived by choosing an
observed residue at each position in the alignment. Each vote of a sequence or pseudosequence is
won by the observed sequence that is most similar, with equidistant sequences splitting the vote
equally. In the example, the 4 sequences are supplemented with 14 pseudosequences (Table 2B).
Sequence 2 might be considered to be the most diverged because the F in position 2 occurs where
all of the other sequences have Y. This gives Sequence 2 a major advantage in competing for
pseudosequences containing F at position 2. As a result, Sequence 2 captures a pleurality, whereas
using the VA method, Sequence 2 is considered no more diverged than Sequences 1 and 4. Which
of these methods is more correct in this example is an open question, although Vingron and Sibbald
have argued that Voronoi weights are more likely to be correct in general (Vingron & Sibbald,
1993). Nevertheless, the generation of all pseudosequences becomes computationally impractical
for multiple sequence alignments with many or diverse sequences, necessitating a Monte Carlo
method to arrive at Voronoi weights. Even this approximate method can become impractical for
larger domains (Thompsonet al., 1994).

Other pairwise distance methods have provided sequence weights in special situations. For
example, a clustering method was used to weight sequences within protein blocks to provide amino
acid pair counts for constructing log-odds substitution matrices (Henikoff & Henikoff, 1992).
Aligned sequence segment pairs that exceeded a fixed percentage of identical residues were
clustered and their contributions to pair counts were averaged. For example, BLOSUM62 is the
matrix derived from pair counts obtained by clustering and averaging the contributions of any
segments within blocks that were more than 62% identical in pairwise comparisons. In this
application, percent identity proved to be a useful measure for generating a matrix series, in
essence parameterizing the allowed degree of redundancy. This method has also been used to
weight sequences within PSSMs (Henikoffet al., 1990), although the method is cruder than those
described above (e. g. Table 1A), and the arbitrary choice of a single fixed percentage is clumsy.

A feature that tree-based and pairwise distance methods have in common is that the weight
assigned to a sequence is a measure of the distance between the sequence and a root or generalized



sequence. Each distance is based on the entire sequence in question. However, the sequence
weights are typically applied to PSSMs in which each position vector is considered independently
of all others. That is, all linkages between residues in a sequence are discarded in calculating the
PSSM, and each position is considered independently when the PSSM is used. This suggests that
useful sequence weights might be based on the diversity observed at each position in an alignment
rather than on the diversity measured for whole sequences.

A simple method to represent the diversity at a position is to award each different residue
an equal share of the weight, and then to divide up that weight equally among the sequences sharing
the same residue. So if in a position of a multiple alignment, r different residues are represented, a
residue represented in only one sequence contributes a score of 1/r to that sequence, whereas a
residue represented in s sequences contributes a score of 1/rs to each of the s sequences. For each
sequence, the contributions from each position are summed to give a sequence weight. For the
nitrogenase example, the position-based weights are calculated in Table 3. Note that although
Sequence 2 receives a premium for having the singular residue at position 2 as in Voronoi weights,
this is balanced by penalties for having the more common residue at positions 3 and 5. In this case,
the resulting weights are similar to those calculated using the VA method. However, unlike the VA
method, position-based weights are always intuitively correct: in contrived examples of uniform
sequences (Table 1B), such weights have been referred to as as "correct weights" (Sibbald &
Argos, 1990) or "true weights" (Vingron & Sibbald, 1993) against which other methods were
compared for intuitive correctness. Position-based weights are simply generalizations of correct
weights from single positions to whole sequences by summation over all positions.

To assess the effectiveness of position-based weights, we carried out comprehensive
evaluations. Sequence-weighted PSSMs derived from protein blocks were used to search the
SWISS-PROT database (Bairoch & Boeckmann, 1992) using the PATMAT searching program
(Henikoff et al., 1990) and evaluated for detection of true positive sequences. This approach is
analogous to that used previously to evaluate amino acid substitution matrices, in which even
minor performance differences could be detected (Henikoff & Henikoff, 1993). As then, we used
the PROSITE catalog of protein families (Bairoch, 1992) to provide lists of true positives for
assessing performance. Blocks were constructed for all families using the fully automated
PROTOMAT system (Henikoff & Henikoff, 1991). In the first series of tests, 2679 blocks
representing 698 different protein groups in PROSITE 11.0 were individually tested. Every block
was provided with a set of sequence weights computed according to each of the different methods
described above. Blocks were then used to search SWISS-PROT 27 by conversion to sequence-
weighted PSSMs. For every position of the alignment, the PSSM entry for each residue was the
sequence-weighted observed frequency of that residue divided by its expected frequency tabulated
from SWISS-PROT (Henikoffet al., 1990).

Evaluation of searching performance was carried out by asking how many true positive
sequences are detected above 99.5% of true negative sequences in the rank-ordered results list
(Pearson, 1991; Henikoff & Henikoff, 1993). For each block tested, the sequence-weighted PSSMs
were compared to a PSSM in which sequences were equally weighted. In most cases, all true
positives were detected by all PSSMs. This is not surprising considering the demonstrated
effectiveness of PSSM searches in general (Henikoffet al., 1990; Henikoff & Henikoff, 1991), the
fact that most of the true positives were represented in the blocks, and the fairly low detection
threshold used. As a result, this test would only detect performance differences for marginal hits
involving the most diverged blocks. Where there were differences between weighted and equal-
weighted PSSMs representing a block, the better PSSM was considered to be the one with more
true positive sequences scoring above 99.5% of true negative sequences. Figure 1 (top) shows the
combined results for all blocks. Every sequence weighting method provided considerably better
overall performance than equal sequence weights, consistent with the empirical results of others
(Thompsonet al., 1994; Luthyet al., 1994). However, there are clear differences in performance.



Three sequence weighting methods performed about equally well: position-based, Voronoi and
branch-proportional weights. These provided better performance than equal sequence weights for
168-172 blocks and worse performance for only 10-14 blocks. VA weights performed less well,
better than equal weights for 111 blocks and worse for 13 blocks. ACL weights also performed less
well (151 to 47). 62% clustering weights performed slightly worse than ACL weights (141 to 50).

One complicating factor in this test concerns the heterogeneity of the 2679 blocks, which
consist of as few as 2 and as many as 368 aligned sequence segments. It is possible that the
performance of sequence weights depends upon the number of sequences in the block. To remove
this complication, PROTOMAT was used to make blocks from a random sample of 10 sequences
drawn from all 173 groups with at least 20 sequences. The 562 blocks that resulted were then used
to construct PSSMs for searching SWISS-PROT. Evaluation was carried out exactly as for the first
test. Since half or fewer true positives were directly represented in the blocks used for searching,
this second test was more challenging. In spite of these differences, the results for the second test
are very similar to results for the first test (Figure 1 bottom). Position-based, Voronoi and branch-
proportional weights again outperformed VA, ACL and 62% clustering weights, although VA
weights show somewhat improved performance in this test. Because of the smaller number of
informative groups in the second test, results are less clear. However, a second random sample of
10 sequences drawn from the 173 groups provided qualitatively similar results (data not shown).

Although our tests were carried out using ungapped protein blocks and simple PSSM
scores, we expect that our conclusions will be generally applicable, for example to sequence
profiles (Gribskovet al., 1987) and to multiple alignments of nucleotide sequences. However, for
applications that insert numerous gap characters in an alignment, gaps must be explicitly
considered when using any sequence weighting scheme. Another limitation to our tests is that only
a single tree construction method was used for tree-based weights, and it is possible that other
methods might lead to different results.

In conclusion, the position-based approach described here provides exact and intuitively
correct sequence weights directly from a multiple sequence alignment and not from an
intermediary measure of distances between sequences. Since position-based sequence weights are
simple to calculate and perform well, they should be appropriate for computationally demanding
applications, such as iterative methods for multiple sequence alignment (Lawrenceet al., 1993;
Kroghet. al.,1994; Baldiet al., 1994).
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Table 1

Comparison of different sequence weighting methods
-−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
A. Simple but real alignment of nitrogenase segments

Swiss-Prot ID AA# Alignment  ACL  BP  VA  VOR  62%  PB

- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
1 NIFE_CLOPA 433    GYVGS .250 .282 .269 .259 .250 .267

2 NIFD_AZOVI 451    GFDGF .000 .344 .269 .315 .250 .267

3 NIFD_BRAJA 461    GYDGF .500 .093 .192 .167 .250 .200

4 NIFK_ANASP 475    GYQGG .250 .282 .269 .259 .250 .267

_________________________________________________________________
B. Contrived alignment of uniform sequences (after Sibbald & Argos, 1990)

Alignment  ACL  BP  VA  VOR  62%  PB
- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
 AAAAA .333 .167 .188 .177 .167 .167
 AAAAA .000 .167 .188 .177 .167 .167
 CCCCC .333 .167 .188 .177 .167 .167
 CCCCC .000 .167 .188 .177 .167 .167
 TTTTT .333 .333 .250 .292 .333 .333
_________________________________________________________________
The original Voronoi weighting scheme (Sibbald & Argos, 1990) is depicted in Tables 1 and 2
because the modified scheme (Vingron & Sibbald, 1993) is difficult to illustrate. In B, the ACL
weights are practicably no different from BP, 62% or PB.



Table 2

Calculation of distance-based sequence weights

-−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
A. VA sequence weights

GYVGS GFDGF GYDGF GYQGG  Total
GYVGS 0       3       2       2       7
GFDGF 3       0       1       3       7
GYDGF 2       1       0       2       5
GYQGG 2       3       2       0       7
- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
Total 7       7       5       7       26
Mean 7/3     7/3     5/3     7/3     26/3
Normalized .269    .269    .192    .269     .999
_________________________________________________________________
B. Voronoi sequence weights

Real sequences GYVGS GFDGF GYDGF GYQGG Total
GYVGS 0 (1)    3        2        2
GFDGF 3        0 (1)    1        3
GYDGF 2        1        0 (1)    2
GYQGG 2        3        2        0 (1)
Pseudo sequences
GYVGF 1 (1/2)  2        1 (1/2)  2
GYVGG 1 (1/2)  3        2        1 (1/2)
GYDGS 1 (1/2)  2        1 (1/2)  2
GYDGG 2        2        1 (1/2)  1 (1/2)
GYQGS 1 (1/2)  3        2        1 (1/2)
GYQGF 2        2        1 (1/2)  1 (1/2)
GFVGS 1 (1)    2        3        3
GFVGF 2        1 (1)    2        3
GFVGG 2 (1/3)  2 (1/3)  3        2 (1/3)
GFDGS 2        1 (1)    2        3
GFDGG 3        1 (1)    2        2
GFQGS 2 (1/3)  2 (1/3)  3        2 (1/3)
GFQGF 3        1 (1)    2        2
GFQGG 3        2        3        1 (1)
- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
Total votes  (14/3)   (17/3)   (9/3)    (14/3) (18)
Normalized   .259     .315    .167      .259 1.000
_________________________________________________________________
The columns in the distance matrices correspond to the 4 sequences in the alignment of nitrogenase
segments (Table 1). In A, the rows also correspond to the 4 sequences. In B, these 4 sequences are
supplemented with the 14 possible pseudosequences generated by all combinations of the residues
in each position. Each entry is the number of positions where the two sequences differ. Each row
of the distance matrix in B gets one vote, which is divided among the columns with the minimum
value; the votes are indicated in parentheses.



Table 3

Position-based sequence weights for the alignment in Table 2A-−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
Position-based residue weights

Residue Position
- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-

   1       2       3       4       5
- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
G 1/(1*4)                 1/(1*4) 1/(3*1)
Y         1/(2*3)
F         1/(2*1)                 1/(3*2)
V                 1/(3*1)
D                 1/(3*2)
Q                 1/(3*1)
S                                 1/(3*1)
_________________________________________________________________
Position-based sequence weights

Sequence Position
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
         1       2       3       4       5      Total Normalized
- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
GYVGS 1/(1*4) 1/(2*3) 1/(3*1) 1/(1*4) 1/(3*1)   4/3    .267
GFDGF 1/(1*4) 1/(2*1) 1/(3*2) 1/(1*4) 1/(3*2)   4/3    .267
GYDGF 1/(1*4) 1/(2*3) 1/(3*2) 1/(1*4) 1/(3*2)   3/3    .200
GYQGG 1/(1*4) 1/(2*3) 1/(3*1) 1/(1*4) 1/(3*1)   4/3    .267
- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-
Total    1       1       1       1       1       5    1.001
_________________________________________________________________
Each residue in each position is assigned a weight equal to 1/(r*s) where r = the number of different
residues in the position and s = the number of times the particular residue appears in the position.
The position-based residue weights are then added for each position in each sequence.



Figure 1. Evaluation of the searching performance of position-specific scoring matrices (PSSMs)
using six different sequence weighting methods. The sequence weighting methods tested were: PB,
position-based (this work); VOR, modified Voronoi (Vingron & Sibbald, 1993); BP, branch
proporti onal (Thompsonet al., 1994); VA (Vingron & Argos, 1989); ACL (Altschulet al., 1989);
62%, 62% clustering (Henikoff & Henikoff, 1992). BP and ACL weights for a block were
calculated from the tree constructed by the Profileweight program of Thompsonet al. (1994),
which uses the neighbor-joining method (Saitou & Nei, 1987). SWISS-PROT amino acid
frequencies were used to construct these PSSMs (Henikoffet al., 1990). All test PSSMs were
compared against a PSSM made with equal sequence weights. The solid bars represent the number
of test PSSMs that scored more true positive sequences above 99.5% of the true negative sequences
in the search than did the equal-weighted PSSMs. The hatched bars represent the number of equal-
weighted PSSMs that scored more true positive sequences above 99.5% of the true negative
sequences than did the test PSSMs. Top: Full set, using PSSMs constructed from 2679 blocks
representing 698 protein groups. All true positive sequences were used to make the blocks. 2679
searches were done for each of the test PSSMs and for the equal-weighted PSSM used as a
standard. Each pair of bars compares 2679 test searches with the equal sequence weighted
searches. For example, 172 of the 2679 PSSMs constructed using PB sequence weights scored
more true positive sequences above 99.5% of the true negative sequences than did the
corresponding equal-weighted PSSMs, while 10 of the equal-weighted PSSMs did better; the PB
and equal sequence weighted PSSMs performed the same in the other 2497 searches. Bottom:
Subset using PSSMs constructed from 562 blocks representing 173 protein groups with at least 20
sequences. Ten true positive sequences were selected at random to make the blocks. Each pair of
bars summarizes results of 562 searches. The Profileweight program for calculating ACL and BP
sequence weights was kindly provided by Julie Thompson and the Voronoi program by Peter
Sibbald. Other software was written in the C programming language and compiled for UNIX
operating systems, and is available from the authors at henikoff@howard.fhcrc.org.
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