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Preface

The use of genome sequences to solve biological

problems has been afforded its own label;  for 

better or worse, it's called "functional genomics." 

David J. Galas. Making Sense of the Sequence. 

Science, 2001, vol. 291, p. 1257

When the completion of the rough draft of the human genome was announced on June 26, 2000, all the parties involved agreed that the major task of identifying the functions of all human genes was still many years ahead. In fact, even the much simpler task of mapping all the genes in the final version of the human genome sequence that should become available within the next couple of years still is a major problem.  Identifying protein-coding genes in the genome sequence and predicting the cellular functions of these proteins can be accomplished only by combining powerful computational tools with a variety of experimental approaches from the arsenals of biochemistry, molecular biology, genetics and cell biology. This book is intended to serve as an introduction to the computational approaches that play a critical role in this emerging new branch of biology, which deals with genome analysis, linking sequence to function, and has been referred to as genomics, or, more specifically, functional genomics. 

This book is the first one specifically devoted to functional genomics, which has shaped as a separate discipline only in the last 5-10 years. Its beginnings have been modest, with only the genome sequences of viruses and organelles determined in the 1980’s. Those sequences were important for their respective disciplines and as a methodological test ground, but they were not particularly helpful for understanding how does an autonomous cell work. By 1992, the first chromosomes of baker’s yeast and large chunks of bacterial genomes started to emerge, and researchers began pondering the question: What’s in the genome? The breakthrough came in 1995 with the complete sequencing of the first genome of a cellular life form, the bacterium Haemophilus influenzae. The second bacterial genome, Mycoplasma genitalium, followed within months.  The next year, the first complete genomes of an archaeon (Methanococcus jannaschii) and a eukaryote (yeast Saccharomyces cerevisiae) became available. Many more microbial genomes followed, and in 1999, the first genome of a multicellular eukaryote, the nematode Caenorhabiditis elegans, has been sequenced. The year 2000 brought us complete genomes of the fruit fly Drosophila melanogaster and the thale-cress Arabidopsis thaliana, and a rough draft of the human genome. So, we are begining the 21st century already having at hand this 3.2 billion-letter text that has been referred to as the Book of Life. The challenge is now to read and interpret it.

To extract biological information from the long strings of As, Cs, Ts, and Gs, functional genomics depends on computational analysis of the sequence data.  It is unrealistic to expect that every single gene or even a majority of the genes found in the sequenced genomes would be studied experimentally any time soon.  On the other hand, using the relatively cheap and fast computational approaches, it often becomes possible to reliably predict the open reading frames in the DNA sequence and to get at least some insight into the possible functions of the encoded proteins. Such an analysis proves valuable for many branches of biology, as it assists in classification and prioritization of the targets for future experimental research. 

Computations on genomes are inexpensive and fast compared to large-scale experimentation, but it would be a mistake to equate this with ‘easy’. The history of the annotation and comparative analysis of the first sequenced genomes convincingly shows that the quality and utility of the final product critically depend on the methods used and the depth of interpretation of the results obtained by computer methods. Unfortunately, errors produced in the course of computer analysis are propagated just as easily as real discoveries, which makes development of reliable protocols and crystallization of the accumulating experience of genome analysis particularly important. 

While functional annotation of genomes may be the most obvious, and in a sense, most important purpose of computational genomics, it is not just a supporting service for experimental functional genomics but a discipline in itself, with its own fundamental goals. The main such goal is understanding genome evolution. Ultimately, understanding here means being able to reconstruct the most likely sequence of evolutionary events that has resulted in the observed genome structures. Attaining this goal will require many more genomes, development of new algorithms and years of careful analysis. Nevertheless, even in its infancy, comparative genomics has brought genuine revelations about evolution. The principal news that could not be easily foreseen in the pre-genomic era is the extreme diversity of the gene composition in different evolutionary lineages. This strongly suggests that, at least among prokaryotes, lateral gene transfer and lineage-specific gene loss were major, formative evolutionary forces, and not rare and relatively inconsequential events as was assumed previously. Accordingly, the straightforward picture of evolution as the growth of the tree of life is replaced by one of a ‘grove’ in which vertical, tree-type growth does occur, but multiple horizontal connections are equally prominent - incomparably more complex, but also more interesting than ever suspected. 

This book describes the computational approaches that have proved to be useful in analyzing complete genomes.  It is intended for a broad range of experimental biologists, including graduate and advanced undergraduate students, whose work builds upon the results of genome analysis and comprises the foundation of functional genomics.  However, we attempt to make the text interesting also for practitioners of genomics itself, particularly those computational biologists whose main occupation is developing algorithms and programs for genome analysis and who could benefit from an accessible discussion of the biological implications of these methods. Most of the approaches discussed in this book have been developed during comparative analysis of the first set of completely sequenced bacterial and archaeal genomes, which are simpler and more amenable to straightforward computational dissection than the much larger eukaryotic genomes. We show, however, that the main principles remain the same for comparative genomics in general. 

The book starts with a brief overview of the history of genomics. It lists the completed and ongoing genome sequencing projects and shows how little do we actually know even about simple genomes, such as bacteriophage  or Escherichia coli. We then discuss the theoretical basis of comparative genomics, emphasizing the evolutionary principle of protein function assignments. The book then proceeds to discuss the databases that store and organize genomic data, with their unique advantages and pitfalls. Familiarity with those database would be useful for any biologist, but for someone interested in functional genomics it is absolutely essential.

The central part of the book discusses, in some depth, the principles and methods of genome analysis and annotation, including identification of genes in a genomic DNA sequence and using sequence comparisons for functional annotation of predicted proteins. We introduce the most common sequence similarity search methods and discuss the ways to automate the searches and increase search sensitivity while minimizing the error rate. The common sources of errors in functional annotation of genomes are discussed and some simple rules of thumb are provided that may help avoid them. We further focus on the approaches to functional prediction that rely on the genome context such as examination of phylogenetic patterns, gene (domain) fusions and conserved gene strings (operons). The discussion is illustrated by examples from the comparative genomics of prokaryotes. 

The following parts of the book consider fundamental and practical applications of comparative genomics. We discuss the use of complete genomes for the reconstruction of the theoretical minimal genome of a living cell, reconstruction of the central metabolic pathways in organisms with completely sequenced genomes, and the application of comparative genomics for identification of potential drug targets in microbial genomes. 

The book is non-technical with respect to the computer methods for genome analysis; we discuss these methods from the user’s viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience should be able to use the book as an introduction to these methods. Knowledge of molecular biology and genetics at the level of basic undergraduate courses is required for understanding the material; similar knowledge of microbiology is a plus. Most of the chapters are accompanied by Problems for Further Study, which are designed to be solved by using methods available through the WWW. Therefore the book can be used as a tutorial in computational methods for comparative and functional genomics.

We hope that this book would provide the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. This should help bridge the "digital divide" between biologists and computer scientists, allowing biologists of various directions and persuasions to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases.

This book has become possible because of our close collaboration with numerous colleagues at the NCBI and around the world. We would like to thank L. Aravind, David Landsman, Darren Natale, Anna Panchenko, Igor Rogozin, and Yuri Wolf for many helpful discussions and Roman Tatusov for maintaining the COG database. We thank the following colleagues for critical reading of individual chapters and numerous helpful criticisms: Chapters 1, 2, and 5 Chapter 3, Aviva Jacobs, Jodie Yin, David Wheeler and Peter Cooper; Chapter 4, Igor Rogozin . We also thank our editor Joanne Tracy for her constant prodding and encouragement, not to mention editorial support, without which this book would have never come to life. Last but not least, we thank our wives for their enormous patience and understanding, which made it all possible.

Finally, we have to state that the opinions expressed in this book reflect personal views of the authors and have no relation to the official positions, if any, of the National Library of Medicine, National Institutes of Health, or the US Department of Health and Human Services.













Bethesda, June 2002
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Introduction

A Comparative Genomicist’s Apology

In the early spring of 1980, one of the authors of this book (EVK) was an excited listener to a seminar presented in Moscow State University, the authors’ alma mater, by a well-known virologist, a scientist of rare creativity, and later a good friend, Anatoly Altstein. The subject of the seminar was a model of the origin of the genetic coding and translation he had developed [Altshtein, 1987 #1193]. The model was a beauty but it was hard to imagine how one would go about verifying it (just in case the reader is curious, an attempt to test this idea using actual molecular models of nucleotides and amino acids has been subsequently published [Altshtein, 1988 #1194]). Towards the end of the seminar, answering the question about validation of the model for who knows which time, Anatoly dropped, rather casually, something to the effect that ”Not to worry, we will soon have many gene sequences to compare and will be able to reconstruct the earliest stages of evolution”. This was the first occasion for the author, at the time a struggling graduate student in virology, with a persistent but futile interest in evolution, to grasp the idea of comparative genomics.  Even so, he remained skeptical as to the potential of sequence comparison to solve the mystery of the Origin of Life. Little did he know that his entire career in science would be dedicated to this very objective: understanding evolution through comparisons of genes, genomes, and proteins. Now, 22 years after that memorable seminar, we are still far from understanding the origin of coding. Perhaps this is the “singularity” of biological evolution that cannot be reached through reconstruction based on the comparative method.  However, comparative genomics has already revealed many fascinating aspects of all subsequent stages of evolution and is bringing us breathtakingly close to the Beginning. 


At about the same time and in the same building, the other author (MYG), then a graduate student in membrane biochemistry, learned about the similarity of membrane organization and energy-transducing processes in bacteria, mitochondria and chloroplasts and got interested in the apparent paradox: survival of all living cells depends on the integrity of the cytoplasmic membrane that maintains the electric charge and transmembrane gradients of Na+ and K+ ions. The interest in the origin and evolution of the energy coupling systems has finally brought this author to - where else? - comparative genomics of microorganisms. Although the principal questions in membrane evolution still remain unresolved, we are gradually approaching a better understanding of the Beginning in this respect, too. 

Chapter I.  

Genomics: From Phage to Human

1.1.  The Humble Beginnings …


The first genome, that of RNA bacteriophage f1, was sequenced in 1976, long before the sequencing era, in a truly heroic feat of direct determination of an RNA sequence. This was followed by the genome of bacteriophage X174, the first triumph of the new, rapid sequencing methods published by Walter Gilbert and Fred Sanger the year before. These are some of the smallest known genomes with only four and ten genes, respectively. Then, in 1982, the last paper published by Sanger before he retired announced the first relatively large genome to be sequenced, that of bacteriophage , probably the most famous model system of the classic age of molecular biology [Sanger, 1982 #1156]. Phage  has 48,502 bases of genomic DNA and ~70 known and predicted protein-coding genes and 23 RNA-coding genes. At 70 characters per line and 43 lines per page, this sequence alone would take over 16 pages of this book. However, the listing of the  protein-coding genes (see Table 1.1) fits into just two pages and definitely conveys more information. 

These days, it may be hard to imagine all the excitement felt by molecular biologists 20 years ago when the  genome was finally finished.  Nevertheless, even in this era of high-throughput methods, it could be instructive to look back and address several questions: (i) is  genome a good model of the subsequently sequenced prokaryotic and eukaryotic genomes; (ii) how accurate was the sequence itself and the original gene assignment; and (iii) how much more have we learned about functions of lambda genes in the past 20 years. 


The answer to the first question is most definitely: yes,  genome has many features common to the genomes of cellular life forms. Neighboring genes are often transcribed in the same direction and encode protein components that have similar functions and/or interact with each other (e.g. tail components, cell lysis proteins). Neighboring genes can overlap, be located next to each other, or can be separated by relatively long intergenic regions. 


To answer the second question, both the sequence and gene assignments turned out to be essentially correct, as the annotation of  genome was provided by scientists who had studied  for years and was based on the whole body of knowledge collected by that time. It is appropriate to note that in contemporary genome sequencing projects such detailed analysis by highly qualified biologists with intimate knowledge of the biology of the particular organism is more an exception, rather than the norm. 

Table 1.1. Protein-coding genes of bacteriophage  

	Chromosomal location, bases
	DNA strand
	Length, aa
	Gene name
	Gene product

	   191..736
	+
	181
	nu1
	 DNA packaging protein

	   711..2636
	+
	641
	A
	 DNA packaging protein

	  2633..2839
	+
	68
	W
	Head-tail joining protein

	  2836..4437
	+
	533
	B
	 Capsid component

	  4418..5737
	+
	439
	C
	 Capsid component

	  5132..5737
	+
	201
	nu3
	 Capsid assembly

	  5747..6079
	+
	110
	D
	 Head-DNA stabilization

	  6135..7160
	+
	341
	E
	 Capsid component

	  7202..7600
	+
	132
	Fi
	 DNA packaging

	  7612..7965
	+
	117
	Fii
	 Head-tail joining

	  7977..8555
	+
	192
	Z
	 Tail component

	  8552..8947
	+
	131
	U
	 Tail component

	  8955..9695
	+
	256
	V
	 Tail component

	  9711..10133
	+
	140
	G
	 Tail component

	 10115..10549
	+
	144
	T
	 Tail component

	 10542..13103
	+
	853
	H
	 Tail component

	 13100..13429
	+
	109
	M
	 Tail component

	 13429..14127
	+
	232
	L
	 Tail component

	 14276..14875 
	+
	199
	K
	 Tail component

	 14773..15444
	+
	223
	I
	 Tail component

	 15505..18903
	+
	1132
	L
	 Tail:host specificity

	18965..19585
	+
	206
	lom
	Outer host membrane

	19650..20855
	+
	401
	orf401
	Tail fiber protein

	20147..20767
	-
	206
	orf206
	Hypothetical protein*

	21029..21973
	+
	314
	orf314
	Tail fiber

	21973..22557
	+
	194
	orf194
	Fiber assembly protein

	22686..23918
	-
	410
	ea47
	

	24509..25399
	-
	296
	ea31
	

	25396..26973
	-
	525
	ea59
	

	27812..28882
	-
	356
	int
	Integration protein

	28860..29078
	-
	72
	xis
	Excisionase

	29118..29285
	-
	55
	-
	Hypothetical protein*

	29374..29655
	-
	93
	ea8.5
	

	29847..30395
	-
	182
	ea22
	

	30839..31024
	-
	61
	orf61
	Hypothetical protein*

	31005..31196
	-
	63
	orf63
	Hypothetical protein*

	31169..31351
	-
	60
	orf60a
	Hypothetical protein*

	31348..32028
	-
	226
	exo
	Exonuclease

	32025..32810
	-
	261
	bet
	Recombination protein

	32816..33232
	-
	138
	gam
	Host-nuclease inhibitor protein 

	33187..33330
	-
	47
	kil
	Host-killing

	33299..33463
	-
	54
	cIII
	Antitermination

	33536..33904
	-
	122
	ssb
	Single-stranded DNA binding protein

	34087..34287
	-
	66
	ral
	Restriction alleviation

	34271..34357
	-
	28
	orf28
	Hypothetical protein*

	34482..35036
	+
	184
	imm21
	Superinfection exclusion protein B

	35037..35438
	-
	133
	N
	Early gene regulator

	35825..36259
	-
	144
	rexB
	Exclusion

	36275..37114
	-
	279
	rexA
	Exclusion

	37227..37940
	-
	237
	cI
	Repressor

	38041..38241
	+
	67
	cro
	Antirepressor

	38360..38653
	+
	97
	cII
	Antitermination

	38686..39585
	+
	299
	O
	DNA replication

	39582..40283
	+
	233
	P
	DNA replication

	40280..40570
	+
	96
	ren
	Ren exclusion protein

	40644..41084
	+
	146
	Nin146
	

	41081..41953
	+
	290
	Nin290
	

	41950..42123
	+
	57
	Nin57
	

	42090..42272
	+
	60
	Nin60
	

	42269..42439
	+
	56
	Nin56
	

	42429..43043
	+
	204
	Nin204
	

	43040..43246
	+
	68
	Nin68
	

	43224..43889
	+
	221
	Nin221
	

	43886..44509
	+
	207
	Q
	Late gene regulator

	44621..44815
	+
	64
	orf64
	Hypothetical protein*

	45186..45509
	+
	107
	S
	Cell lysis protein

	45493..45969
	+
	158
	R
	Cell lysis protein

	45966..46427
	+
	153
	Rz
	Cell lysis protein

	46459..46752
	-
	97
	bor
	Bor protein precursor

	47042..47575
	-
	177
	-
	Putative envelope protein

	47738..47944
	+
	68
	-
	Hypothetical protein*


Based on the data from the NCBI Entrez Genomes web site, http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/altik?gi=10119&db=Genome 
A comparison of Table 1.1 with the original paper by Sanger et al. [Sanger, 1982 #1156] shows that there is actually not much to add to their annotations. The use of 
recently developed sophisticated gene prediction programs, such as Glimmer (see ♦4.1.2), coupled with the analysis of the regions that are conserved between lambda and related bacteriophages, led to the conclusion that certain intergenic regions might contain protein-coding genes (marked by asterisks in the Table 1.1). Unfortunately, most of these genes remain uncharacterized and it is not even known if they are ever expressed.  It is worth noting that exactly the same doubts exist about the possible functions and/or expression of a large number of so-called “hypothetical” genes, identified in the genomes of cellular life forms by essentially the same two principal approaches (see ♦4.1). 

When reading that Sanger paper now, 20 years after it has appeared, one is struck by the absence of any analysis of protein sequences in this detailed, thorough work. Although the authors have done careful computational analysis of open reading frames, the likely translation starts and codon usage, the very word ‘homologue’ is not used in the article and there is no mention of any search of protein sequence databases, something that these days is, by default, an integral part of any genomic study.  Not that protein sequence databases did not exist at the time: the first one, the Protein  Identification Resource (PIR), was launched by Margaret Dayhoff, one of the great pioneers of computational biology, in 1965, long before genomics has even become conceivable [Dayhoff, 1965 #380; Dayhoff, 1968 #394]. However, reliable and rapid methods for searching this database still did not exist at that time and, more generally, database search was not a part of the culture in molecular biology at all. And for a good reason, too. Had Sanger and his coworkers performed a PIR search, even using the methods available in 2002, they would have found practically nothing interesting because the sequences available at the time were few and far apart, and there were no homologs of phage  proteins among them. Clearly, the time was not ripe yet for comparative genomics and, in a sense, for genomics itself because, as we will see throughout this book, the comparative approach is truly central to the genomic enterprise.

Revisiting phage  genome after 20 years, we see a completely different ‘genomescape’. Using the PSI-BLAST program (see ♦4.3.4) to search of the complete non-redundant protein sequence databasemaintained at the NCBI (National Center for Biotechnology Information, a division of the National Institutes of Health in Bethesda, Maryland, USA) for homologs of the 73 proteins listed as gene products of phage  takes about an hour on a moderate power computer; another hour was spent running selected proteins through the conserved domain search using the CDD option of the NCBI’s BLAST server (see ♦4.4). Of course, we could instead have scoured the literature for descriptions of computational analyses of  proteins. However, extracting the relevant information from databases, such as PubMed (♦3.7.), is far from being trivial because, in most cases, the relevant papers dealt with more general issues and would not have , let alone a particular gene, mentioned in the title or abstract.  Running the searches anew was much faster and easier. Besides, sequences databases are growing daily, which may substantially affect the results of searches and might even lead to new discoveries. Perusing the results, we should first note that, with a few exceptions, there are now homologs readily detectable for the phage proteins. In the majority of cases, these are proteins from other related phages (sometimes integrated as prophages into the bacterial chromosome). However, twelve  proteins show conservation in bacteria, archaea, and eukaryotes, and their functions and biochemical activity could be predicted (Table 1.2). 

It is remarkable that some of the more interesting computational predictions remain without experimental test. Admittedly, the visibility of molecular biology of bacteriophages as a research field has not increased since the 70-ies and the funds have pretty much tapered off. Good examples are the Ea59 and K genes that are predicted to encode an ATPase and a metal-dependent protease, respectively. Both are clear and readily testable predictions that have been described in print, even if briefly [Gorbalenya, 1990 #941; Ponting, 1999 #39], but no experiment testing these predictions has been reported so far. Interestingly, an observation has been made during these searches that, to our knowledge, is indeed new. The Ea31 protein was shown to contain a metal-dependent nuclease domain. The stop codon of the Ea31 gene overlaps the start codon of Ea59 leading to the intriguing hypothesis that the two proteins interact and form an ATP-dependent nuclease complex. This situation is not uncommon: computational analysis of genomes keeps yielding interesting functional predictions even years after the publication of the sequence; what is most often lacking is systematic experimental testing of these predictions.

We will come back to this dramatic rift between computational and experimental analysis of most, if not all, genomes with more numbers, but first let us step back and have a quick look into the history of genomics, which is short, but not without its own drama (an abbreviated timeline is given in Table 1.3). By definition, genomics requires genome sequences, and to engage in comparative genomics, one needs at least two genomes to compare. In a close analogy to the history of molecular genetics, which owes most of its early progress to bacteriophages that were used as model systems, comparative genomics was first practiced with the genomes of viruses. These are orders of magnitudes smaller than even the tiniest bacterial genomes, and in case a virus grows well, sequencing of viral genomes became a relatively straightforward enterprise already in the early 80ies. By 1983, six years after Sanger and Gilbert started the sequencing era, a considerable number of complete genomes of diverse small viruses of plants, 

Table 1.2  Non-trivial evolutionary connections and functional predictions for bacteriophage  proteins
	Gene product
	Evolutionary conservation
	Structure, domain architecturea
	Predicted function

	A (TerL)
	Bacteriophages, herpesviruses 
	A modified P-loop ATPase domain, distantly related to a vast class of helicases
	ATPase subunit of the terminase, involved in DNA packaging in phage head

	C
	Bacteria and archaea
	ClpP protease domain
	Minor capsid protein, cleaves the scaffold protein during maturation

	K 
	Bacteria, archaea and eukaryotes
	Consists of an N-terminal JAB/MPN domain (predicted metalloprotease) and a C-terminal NLPC domain (uncharacterized domain found in bacterial lipoproteins)
	Tail subunit; predicted protease involved in tail assembly (based on the presence of the JAB/MPN domain)

	Ea31
	Scattered distribution in bacteria and archaea
	Unknown
	Predicted nuclease of the McrA (HNH) family

	Ea59
	Bacteria, archaea and eukaryotes
	P-loop ATPase domain of the ABC class
	Predicted ATPase 

	Exo (redX)
	Bacteria, archaea, eukaryotes, viruses
	 exonuclease domain, distantly   related to a broad variety of nucleases
	A nuclease involved in phage recombination and late rolling-circle replication

	CI
	Bacteria, archaea
	N-terminal helix-turn-helix DNA-binding domain fused to a C-terminal serine protease domain of the LexA/UmuD family
	Transcription repressor of genes required for lytic development

	Cro
	Bacteria, archaea
	Helix-turn-helix DNA-binding domain
	Transcription repressor of early genes

	O
	Bacteria, archaea
	Helix-turn-helix DNA-binding domain
	DNA-binding protein involved in the initiation of replication

	Ren
	Bacteria, archaea
	Helix-turn-helix DNA-binding domain
	Protein involved in exclusion of replication of heterologous genomes in -infected bacteria

	Nin290
	Bacteria, archaea, eukaryotes
	PP-loop ATPase domain [  ]
	Predicted ATP pyrophosphatase, role in phage replication unknown

	Nin221
	Bacteria, archaea, eukaryotes
	Calcineurin-like serine/threonine protein phosphatase domain
	Protein phosphatase, role in phage replication unknown


a For detailed domain description, see the SCOP and CATH databases (♦3.3). 

animals and bacteria (bacteriophages) had been amassed and the time was ripe for the birth of comparative genomics.

Pinpointing the exact beginning of comparative genomics may be difficult. In a sense, one may say that it began as soon as there were two genomes to compare, i.e. in 1977 when the genomes of the phage X174 was sequenced and could be compared with the already available sequence of phage f1. However, this was a vacuous beginning because the two phages had virtually nothing in common (a propos, this has not changed in 20 years: for all we know, these phage families are truly unrelated). It seems that comparative genomics had a real head start with two astonishing discoveries that caught most, if not all, virologists utterly by surprise. First, it has been shown that RNA-containing retroviruses (causative agents of certain leucoses in animals and humans and, as was shown later, of AIDS) shared a conserved replicative enzyme, the reverse transcriptase, with two groups of DNA viruses, the hepadnaviruses (including the medically important hepatitis B virus) and caulimoviruses, infecting plants [Toh, 1983 #1251]. Second, it turned out that small RNA viruses infecting animals (picornaviruses such as polio and foot-and-mouth disease) and those infecting plants (cowpea mosaic virus) shared not only sufficient  sequence similarity that allowed the identification of homologous (orthologous) genes, but also, in part, the order of these genes in their genomes [Argos, 1984 #1249; Haseloff, 1984 #1250; Ahlquist, 1985 #1248]. Subsequent systematic studies have revealed a complex network of homologous relationships within the vast classes of positive-strand RNA viruses and negative-strand RNA viruses. Although still disputed, the concept emerged that each of these classes was monophyletic, that is, probably evolved from a common ancestor virus [Koonin, 1993 #1252]. These studies combined two elements that were crucial in defining the identity of the emerging discipline of comparative and evolutionary genomics. Firstly, the objects of analysis were complete genomes, however small, rather than individual genes, and accordingly, the notions of conservation of gene order and gene shuffling became important. Secondly, the discoveries made through these genome comparisons were completely unexpected; there was no experimental data that would prepare researchers for the startling unity of superficially unrelated viruses. 

Table 1.3. A brief timeline of genomics

	Year
	Event
	Ref.

	1962
	The first theory of molecular evolution, the notion of Molecular Clock (Linus Pauling and Emile Zukerkandl)
	[Zuckerkandl, 1965 #1243]

	1965
	Atlas of Protein Sequences, the first protein database (Margaret Dayhoff and coworkers)
	[Dayhoff, 1965 #380]

	1970
	Needleman-Wunsch algorithm for global protein sequence alignment
	[Needleman, 1970 #1280]

	1977
	DNA sequencing (Fred Sanger, Walter Gilbert and coworkers) and first software for sequence analysis (Roger Staden)
	[Staden, 1977 #1279]

	1977
	Phylogenetic taxonomy; archaea discovered; the notion of the three primary kingdoms of life introduced (Carl Woese and George Fox)
	[Woese, 1977 #355]

	1981
	Smith-Waterman algorithm for local protein sequence alignment 
	[Smith, 1981 #145]

	1981
	Human mitochondrial genome sequenced
	[Anderson, 1981 #1284]

	1981
	The concept of a sequence motif (Russell Doolittle)
	[Doolittle, 1981 #1315]

	1982
	GenBank Release 3 made public
	

	1982
	Phage  genome sequenced 
	[Sanger, 1982 #1156]

	1983
	The first practical sequence database searching algorithm (John Wilbur and David Lipman) 
	[Wilbur, 1983 #1273]

	1985
	FASTP/FASTN: fast sequence similarity searching (William Pearson and David Lipman) 
	[Lipman, 1985 #1275]

	1986
	Introduction of Markov chains for DNA analysis (Mark Borodovsky and coworkers)
	[Borodovskii, 1986 #1316]

	1987
	First profile search algorithm (Michael Gribskov, Andre McLachlan, David Eisenberg) 
	[Gribskov, 1987 #1276]

	1988
	National Center for Biotechnology Information (NCBI) created at NIH/NLM
	

	1988 
	EMBnet network for database distribution created
	

	1990
	BLAST: fast sequence similarity searching (Stephen Altschul, David Lipman and coworkers) 
	[Altschul, 1990 #192]

	1991
	EST: expressed sequence tag sequencing (Craig Venter and coworkers)
	[Adams, 1991 #1283]

	1994
	Hidden Markov Models of multiple alignments (David Haussler and coworkers; Pierre Baldi and coworkers)
	[Baldi, 1994 #1341; Baldi, 1994 #1342; Krogh, 1994 #1340]

	1994
	SCOP classification of protein structures (Alexei Murzin and coworkers) 
	[Murzin, 1995 #369]

	1995
	First bacterial genomes completely sequenced 
	[Fleischmann, 1995 #14; Fraser, 1995 #15]

	1996
	First archael genome completely sequenced 
	[Bult, 1996 #7]

	1996
	Yeast genome completely sequenced 
	[Goffeau, 1996 #20]

	1997
	Introduction of gapped BLAST and PSI-BLAST 
	[Altschul, 1997 #191]

	1997
	COGs: Evolutionary classification of proteins from complete genomes (Roman Tatusov, Eugene Koonin, David Lipman) 
	[Tatusov, 1997 #43]

	1998
	Worm (multicellular) genome completely sequenced 
	[The C. elegans Sequencing Consortium, 1998 #379]

	1999
	Fly genome completely sequenced 
	[Adams, 2000 #375]

	2001
	Human genome (nearly) completely sequenced 
	[Lander, 2001 #271; Venter, 2001 #315]


In retrospect, it is somewhat ironic that comparative genomics had to start with virus genomes (due to the experimental contingency) because viral proteins tend to evolve extremely fast and detection of conservation between distant viruses may be a non-trivial task even with advanced methods of computational sequence analysis, let alone with those available in the early 80-ies. This was a challenge and perhaps a blessing in disguise. The difficulty of detecting sequence conservation among viral proteins prompted those who ventured into this area to employ approaches that later proved invaluable in comparative genomics and computational biology in general: (i) compare protein sequences, rather than nucleotide sequences directly, whenever distant relationships are involved and sensitivity is an issue, (ii) rely on multiple, instead of pairwise, comparisons, (ii) search for conserved patterns or motifs in multiple sequences, and above all, (iii) actually look at sequences (and structures whenever these were becoming available) and think about the potential relationships in an effort to synthesize all relevant shreds of information. This practice has been dubbed, more or less pejoratively, “sequence gazing” [Henikoff, 1991 #1258]. Sure enough, sequence and structure comparisons are prone to error and, worse, to fantasy, and these dangers had been particularly grave in the early days, before the statistical foundations of computational biology have been worked out and the rules of thumb have been established through accumulated practices. There is no doubt, however, that success stories of computational prediction of gene functions have been of much greater import and have, to a large extent, determined the very feasibility of the further progress of genomics. 

The first comparative-genomic study at a larger scale, investigating the relationships between genomes that contained >100 genes each, came in 1986 [McGeoch, 1986 #1181]. The newly sequenced genome of varicella-zoster virus was carefully compared to the previously sequenced Epstein-Barr virus genome (the original Epstein-Barr genome paper [Baer, 1984 #1259] resembled the  work in that no homologs were reported for any of the viral proteins because, indeed, none were to be easily identified among the sequences then available). This work, little noticed outside virology, already included the principal elements of the comparative-genomic approach, if not the actual methods .

1.2. …and the Astonishing Progress of Genome Sequencing

Comparative genomics of cellular life forms is in a way a “by-product” of the Human Genome Project. Probably the greatest insight of the leaders of the early stages of this project was the realization that, in isolation, the human genome would be a costly but uninterpretable string of three billion or so of A’s, T’s, G’s and C’s.  Only through systematic comparisons to other genomes, may we hope to make sense of the text of this “Book of Life”. As far as genomics is concerned, Theodosius Dobzhansky’s famous maxim “Nothing in biology makes sense except in the light of evolution” is not some kind of evolutionist propaganda, but an entirely literal and more or less routine description of the situation. And so, in the last decade of the 2nd millennium, the genome sequences started pouring in. Yeast chromosome III, the first respectable chunk of contiguous genome sequence [Oliver, 1992 #1189] that became available in 1992 (quite modest, by today’s standards, just ~320,000 base pairs), generated major excitement epitomized in the title of a Nature note describing a re-analysis of the ORFs from chromosome III: “What’s in the genome?” [Bork, 1992 #1257]. From the analysis of this sequence and other large genome segments that started to appear in the next months, at least two notions were derived that became critical for the subsequent evolution of comparative genomics: (i) there were many more genes in the genome than anyone suspected previously on the basis of genetic or biochemical experiments, and (ii) methods of computational analysis matter – careful analysis employing multiple complementary approaches yields incomparably more information on gene functions and evolutionary relationships than any single automatic procedure. 

The appearance, in August of 1995, of the complete genome sequence of the parasitic bacterium Haemophilus influenzae [Fleischmann, 1995 #14], ushered in the era of “real” genomics, the study of complete genomes of cellular organisms. The acceleration of genome sequencing required for this to happen was greatly facilitated by the whole-genome shotgun approach pioneered by Craig Venter, Hamilton Smith and Leroy Hood [Venter, 1996 #1195]. Systematic comparative approaches were tried immediately, even before the second genome came, by using the largely finished genome of Escherichia coli [Tatusov, 1996 #42]. Since that point, complete genomes of bacteria and archaea have been arriving at a steady rate, which seems to be accelerating in the 3rd millennium (Fig. 1.1). Starting with the second genome sequencing paper [Fraser, 1995 #15], reports on new genomes inevitably became comparative-genomic studies because, as we have already mentioned, that is the only way to even start understanding “what’s in the genome”.


By June 1st of 2002, genomes of 73 species of unicellular organisms (55 bacterial species, 16 archaea, and two eukaryotes) were completely sequenced and made available in public databases. In Table 1.4, the completely sequenced bacterial and archaeal genomes are listed in the order of their sizes. Remarkably, the organisms with the largest genomes (Streptomyces coelicolor among bacteria, Methanosarcina acetivorans among the archaea) have been sequenced only recently, which promises many interesting discoveries yet to come. 

By the time of this writing, the first genomes of multicellular eukaryotes, the nematode worm Caenorhabditis elegans, fruit fly Drosophila melanogaster, thale cress Arabidopsis thaliana, the pufferfish Fugu rubripes, and the genome of Homo sapiens have been nearly completed (as discussed in ♦6.1, the very concept of a complete genome sequence for these organisms is different from that for prokaryotes and unicellular eukaryotes). At least 100 more prokaryotic genomes and many eukaryotic genomes, including those of mouse and rat, were at different stages of completion at the time of this writing. Beyond doubt, many more finished or nearly finished genome sequences exist in proprietary databases maintained by biotech companies, but since these cannot be freely analyzed, they do not count inasmuch as comparative genomics is discussed. 

Any list of completed genomes rapidly becomes outdated and so will Table 1.4 even as this book appears in print. Periodically updated listings of both finished and unfinished publicly-funded genome sequencing projects are available at the web sites maintained at The Institute for Genomic Research (TIGR, http://www.tigr.org/tdb/mdb/mdb.html) and at the NCBI (http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html). The Chicago-based Integrated Genomics Inc. maintains Genomes OnLine Database (http://wit. integratedgenomics.com/GOLD), which lists most public as well as some private projects.  In addition, web sites of the genome sequencing centers list the projects run or planned in those particular centers (see ♦8.2). 
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Fig. 1.1. Growth of the number of completely sequenced genomes.  The data are taken from table 1.4. The 2002 figure is extrapolated from the 5-month results. 

Table 1.4.  Completely sequenced genomes (as of June 1, 2002)

	Speciesa
	Genome size, kb
	Total  no. of proteins
	Year finished
	Sequencing centerb
	Ref.

	Bacteria
	
	
	
	
	

	Streptomyces coelicolor
	8,668
	7,567
	2002
	Sanger Centre
	[Bentley, 2002 #1150]

	Mesorhizobium loti
	7,036
	6,752
	2000
	Kazusa Institute
	[Kaneko, 2000 #289]

	Sinorhizobium meliloti 
	6,692
	6,205
	2001
	EU Consortium 
	[Galibert, 2001 #1145; Capela, 2001 #1146]

	Nostoc sp. (Anabaena)
	6,414
	5.366
	2001
	Kazusa Institute
	[Kaneko, 2001 #1138]

	Pseudomonas aeruginosa
	6,264
	5,565
	2000
	Pathogenesis Co.
	[Stover, 2000 #215]

	Agrobacterium tumefaciens
	5,674
	5,406
	2001
	U. Washington, Cereon Inc.
	[Goodner, 2001 #1125; Wood, 2001 #1126]

	Xanthomonas citri 
	5,176
	4,312
	2002
	U. Sao Paulo
	[Da Silva, 2002 #1153]

	Xanthomonas campestris 
	5,076
	4,181
	2002
	U. Sao Paulo
	[Da Silva, 2002 #1153]

	Salmonella typhimurium
	4,857
	4,451
	2001
	Sidney Kimmel Cancer Center
	[McClelland, 2001 #1143]

	Salmonella typhi 
	4,809
	4,600
	2001
	Sanger Centre
	[Parkhill, 2001 #1144]

	Yersinia pestis 
	4,654
	4,008
	2001
	Sanger Centre
	[Parkhill, 2001 #1155]

	Escherichia coli 
	4,639
	4,289
	1997
	U. Wisconsin
	[Blattner, 1997 #3]

	Mycobacterium tuberculosis
	4,412
	3,918
	1998
	Sanger Centre
	[Cole, 1998 #8]

	Bacillus subtilis
	4,215
	4,100
	1997
	Institute Pasteur
	[Kunst, 1997 #33]

	Bacillus halodurans
	4,202
	4,066
	2000
	JAMST Center
	[Takami, 2000 #290]

	Vibrio cholerae
	4,033
	3,827
	2000
	TIGR
	[Heidelberg, 2000 #214]

	Caulobacter crescentus
	4,017
	3,737
	2001
	TIGR
	[Nierman, 2001 #288]

	Clostridium acetobutylicum
	3,941
	3,672
	2001
	Genome Therapeutics
	[Nolling, 2001 #1129]

	Ralstonia solanacearum 
	3,716
	3,442
	2002
	Genoscope
	[Salanoubat, 2002 #1142]

	Synechocystis sp. 
	3,573
	3,169
	1996
	Kazusa Institute
	[Kaneko, 1996 #25]

	Corynebacterium glutamicum
	3,309
	3,040
	2001
	
	[Tauch, 2002 #1132]

	Mycobacterium leprae
	3,268
	2,720
	2001
	Sanger Centre
	[Cole, 2001 #285]

	Clostridium perfringens
	3,031
	2,660
	2002
	U. Tsukuba
	[Shimizu, 2002 #1130]

	Listeria innocua
	3,011
	2,981
	2001
	Instutute Pasteur
	[Glaser, 2001 #1134]

	Listeria monocytogenes
	2,945
	2,855
	2001
	Instutute Pasteur
	[Glaser, 2001 #1134]

	Staphylococcus aureus
	2,814
	2,594
	2001
	Juntendo U.
	[Kuroda, 2001 #1147]

	Thermoanaerobacter tengcongensis
	2,689
	2,588
	2002
	Beijing Genomics Inst.
	[Bao, 2002 #1152]

	Xylella fastidiosa
	2,679
	2,766
	2000
	San Paulo State
	[Simpson, 2000 #309]

	Deinococcus radiodurans
	2,649
	2,580
	1999
	TIGR
	[White, 1999 #294]

	Lactococcus lactis
	2,365
	2,266
	2001
	INRA
	[Bolotin, 2001 #296]

	Pasteurella multocida
	2,257
	2,014
	2001
	U. Minnesota
	[May, 2001 #299]

	Neisseria meningitidus
	2,184
	2,121
	2000
	TIGR, Sanger 
	[Parkhill, 2000 #298; Tettelin, 2000 #297]

	Fusobacterium nucleatum
	2,174
	2,067
	2002
	Integr.Genomics
	[Kapatral, 2002 #1133]

	Streptococcus pneumoniae
	2,160
	2,094
	2001
	TIGR
	[Tettelin, 2001 #1148; Hoskins, 2001 #1149]

	Brucella melitensis
	2,117
	2,059
	2002
	U. Scranton
	[DelVecchio, 2002 #1127]

	Thermotoga maritima
	1,861
	1,846
	1999
	TIGR
	[Nelson, 1999 #35]

	Streptococcus pyogenes 
	1,852
	1,697
	2001
	U. Oklahoma 
	[Ferretti, 2001 #305]

	Haemophilus influenzae 
	1,830
	1,709
	1995
	TIGR
	[Fleischmann, 1995 #14]

	Campylobacter jejuni
	1,641
	1,654
	2000
	Sanger Centre
	[Parkhill, 2000 #293]

	Helicobacter pylori
	1,668
	1,566
	1997
	TIGR
	[Tomb, 1997 #44]

	Aquifex aeolicus
	1,551
	1,522
	1998
	Diversa Corp.
	[Deckert, 1998 #10]

	Rickettsia conorii 
	1,269
	1,274
	2000
	U. Marseille
	[Ogata, 2001 #1141]

	Chlamydia pneumoniae
	1,230
	1,052
	1999
	UC Berkeley
	[Kalman, 1999 #24]

	Treponema pallidum
	1,138
	1,031
	1998
	TIGR
	[Fraser, 1998 #17]

	Rickettsia prowazekii
	1,111
	834
	1998
	Uppsala U.
	[Andersson, 1998 #1]

	Chlamydia muridarum
	1,069
	909
	2000
	TIGR
	[Read, 2000 #1128]

	Chlamydia trachomatis
	1,042
	894
	1998
	UC Berkeley
	[Stephens, 1998 #41]

	Borellia burgdorferi
	911
	850
	1997
	TIGR
	[Fraser, 1997 #16]

	Mycoplasma pneumoniae 
	816
	677
	1996
	U. Heidelberg
	[Himmelreich, 1996 #21]

	Ureaplasma urealyticum
	752
	611
	2000
	U. Alabama
	[Glass, 2000 #308]

	Mycoplasma pulmonis
	964
	782
	2001
	U. Bordeaux
	[Chambaud, 2001 #1137]

	Buchnera sp. APS
	641
	564
	2000
	U. Tokyo
	[Shigenobu, 2000 #292]

	Mycoplasma genitalium 
	580
	467
	1995
	TIGR
	[Fraser, 1995 #15]

	Archaea
	
	
	
	
	

	Methanosarcina  acetivorans
	5,751
	4,540
	2002
	Whitehead Inst.
	[Galagan, 2002 #1136]

	Methanosarcina mazei
	4,096
	3,371
	2002
	
	

	Sulfolobus solfataricus
	2,992
	2,997
	2001
	EU/Canada
	[She, 2001 #489]

	Sulfolobus tokodaii
	2,695
	2,826
	2001
	NITE
	[Kawarabayasi, 2001 #1151]

	Halobacterium sp NRC-1
	2,380
	2,446
	2000
	Inst. Syst. Biol.
	[Ng, 2000 #295]

	Pyrobaculum aerophilum
	2,222
	2,605
	2002
	UCLA
	[Fitz-Gibbon, 2002 #1139]

	Archaeoglobus fulgidus
	2,178
	2,420
	1997
	TIGR
	[Klenk, 1997 #28]

	Pyrococcus furiosus 
	1,908
	2,065
	2001
	U. Maryland
	[Robb, 2001 #347]

	Methanobacerium  thermoautotrophicum 
	1,751
	1,869
	1997
	Genome Therapeutics 
	[Smith, 1997 #40]

	Pyrococcus abyssi
	1,765
	1,765
	2000
	Genoscope
	[Myllykallio, 2000 #311]

	Pyrococcus horikoshii 
	1,739
	~1,750
	1998
	NITE
	[Kawarabayasi, 1998 #26]

	Methanopyrus kandleri 
	1,695
	1,691
	2002
	Fidelity Sistems
	[Slesarev, 2002 #1135]

	Aeropyrum pernix
	1,670
	~1,720
	1999
	NITE
	[Kawarabayasi, 1999 #27]

	Methanococcus jannaschii
	1,665
	1,715
	1996
	TIGR
	[Bult, 1996 #7]

	Thermoplasma volcanuim
	1,585
	1,499
	2000
	NIBHT
	[Kawashima, 1999 #307]

	Thermoplasma acidophilum
	1,565
	1,478
	2000
	MPI Biochem.
	[Ruepp, 2000 #306]


a Further in the book, these names are used mostly in the abbreviated form. Shading indicates obligate parasites.

b For the complete name of the sequencing center, see the NCBI Entrez Genomes web site http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome, Appendix 2 (♦8.2), or the original reference.

Table 1.4 - continued

	Eukaryotes
	
	
	
	
	

	
	
	
	
	
	

	Homo sapiens
	~3,100,000
	~40,000
	~2002
	Human Genome Project, Celera
	[Venter, 2001 #315; Lander, 2001 #271]

	Mus musculus
	~3,100,000
	~40,000
	~2002
	Mouse Genome Project, Celera
	-

	Fugu rubripipes
	
	
	
	
	

	Oryza sativa
	~420,000
	32,277
	2002
	
	[Goff, 2002 #1198]

	Anopheles gambiae
	~278,000
	
	2002
	Celera
	-

	Drosophila melanogaster
	~137,300
	~13,500
	2000
	Celera, UC Berkeley
	[Adams, 2000 #375]

	Arabidopsis thaliana
	~115,400
	25,498
	2000
	Arabidopsis Genome Project
	[Arabidopsis Genome Initiative, 2000 #361]

	Caenorhabditis elegans
	~96,900
	~19,000
	1999
	Sanger Centre, Washington U.
	[The C. elegans Sequencing Consortium, 1998 #379]

	Saccharomyces cerevisiae
	~11,600
	~6,000
	1996
	European Consortium
	[Goffeau, 1996 #20]

	Schizosaccharomyces pombe
	~12,600
	4,824
	2002
	Sanger Centre
	[Wood, 2002 #1196]

	Encephalitozoon cuniculi
	~2,500
	1,997
	2001
	Genoscope
	[Katinka, 2001 #1025]


The relative ease of 6- to 8-fold coverage sequencing as compared to finishing and genome annotation resulted in the availability of a number of incomplete genomes that are not going to be finalized any time soon (see, for example, the web site of the Department of Energy Joint Genome Insitute, http://www.jgi.doe.gov/JGI_microbial/html/index.html). This sequence data is a treasure trove for someone who knows what to look for.  Most of the data is available for searching through the NCBI BLAST page (see below) or through the web sites of each particular sequencing center.  A partial list of the major genome sequencing centers is available in the Appendices (♦8.2).  As new genome sequencing centers appear on the map, this listing is going to become obsolete, too. For updated listings of such centers one could look at the NCBI web site (http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/links.html) or at the web site of the National Human Genome Research Institute (http://www.nhgri.nih.gov/Data/#us). 

In addition to the whole-genome sequencing projects, there are many large-scale expressed sequence tags (EST) sequencing projects, aimed at collecting mRNA sequence data from eukaryotic organisms that have not yet made it to the list of priority targets for complete sequencing, see ♦3.5. 

1.3.  Basic Questions of Comparative Genomics

In the subsequent chapters of this book, we address many specific problems in comparative and evolutionary genomics. Right now, however, it makes sense to address some basic questions, the answers to which, as we believe, define the status of this research area. 

How good is our current collection of genome sequences? 

More precisely, how representative is it of the actual diversity of life forms? To address this issue, one needs to superimpose the sequenced genomes over the taxonomy tree and see how densely populated are the main branches. When this is done with the prokaryotic part of the taxonomy, the result seems to be rather encouraging: the main bacterial and archaeal lineages are already represented by either a complete genome sequence or a genome project that is nearing completion (Table 1.5). However, this needs to be taken with a grain of salt because our knowledge of prokaryotic diversity is itself quite incomplete. Environmental molecular evolutionary studies indicate that a great majority of bacterial and archaeal species are “uncultivable” with the current methods [Pace, 1997 #1256] (recent techniques aimed at growing these [Kaeberlein, 2002 #1253] might eventually result in a real revolution in microbial genomics, but it will take years to unfold). Most of those species whose rRNA sequences are produced by environmental cloning fall within already known bacterial and archaeal lineages suggesting that we already have sampled most of the prokaryotic diversity. However, this argument is somewhat circular because we have no idea how many prokaryotes might be not only uncultivable but also unclonable, even with the most non-specific set of PCR primers that have been tried. A case in point is the recent report of the new archaeal phylum, the Nanoarchaea [Huber, 2002 #1191]. With these caveats, it is fair to say that, to the best of our knowledge, the diversity of prokaryotes is reasonably well covered by genome sequences and, hence, the scene is set for prokaryotic evolutionary genomics. 

The situation with eukaryotes is different in that we have a better grasp of the true eukaryotic diversity and realize that the available set of genome sequences is by no means representative (Table 1.6). While certain groups (ascomycetes, nematodes, insects, mammals) are subject of multiple genome projects, most of the early branching eukaryotic lineages are not represented among the sequenced genomes and neither are most of the animal and plant phyla, including such important groups as sponges, coelencerates, and segmented (annelid) worms. Certainly, this is no reason to postpone detailed comparative-genomic analysis, but this insufficiency of genomic data needs to be taken into account when conclusions are made on eukaryotic evolution. 

Table 1.5.  Coverage of the main prokaryotic phyla by genome projects

	Major prokaryotic phyla
	Genome sequencing

	
	Completed
	In progress

	Archaea
	 
	 

	
	Crenarchaeota
	4
	3

	
	Euryarchaeota
	12
	2

	Bacteria
	
	

	
	Aquificales
	1
	-

	
	CFB/Chlorobium group 
	-
	4

	
	Chlamydiales/Verrucomicrobia group
	3
	-

	
	Chrysiogenetes
	-
	-

	
	Cyanobacteria
	2
	2

	
	Deferribacteres
	-
	-

	
	Dehalococcoides group 
	-
	1

	
	Dictyoglomus group
	-
	-

	
	Fibrobacter/Acidobacteria group
	-
	1

	
	Firmicutes (Gram-positive) 
	15
	28

	
	Bacillus/Clostridium group (high G+C)
	13
	20

	
	Actinobacteria (low G+C)
	2
	8

	
	Fusobacteria 
	1
	-

	
	Green non-sulfur bacteria 
	-
	1

	
	Planctomycetales
	-
	-

	
	Proteobacteria
	23
	44

	
	Alpha subdivision
	7
	9

	
	Beta subdivision 
	2
	8

	
	Gamma subdivision 
	12
	20

	
	Delta subdivision 
	-
	5

	
	Epsilon subdivision
	2
	2

	
	Spirochaetales
	2
	2

	
	Thermodesulfobacteria
	-
	-

	
	Thermomicrobia
	-
	-

	
	Thermotogales
	1
	-

	
	Thermus/Deinococcus group
	1
	1


a Taxonomy is based on the NCBI Taxonomy database (see ♦3.6). The data on the finished and ongoing genome sequencing projects are from the Entrez Genomes database (http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html) and the Genomes OnLine Database (http://wit. integratedgenomics.com/GOLD). 

Table 1.6.  Status of the eukaryotic genome projects 

	Major eukaryotic phyla
	Representatives with ongoing 

sequencing projects

	Acanthamoebidae 
	-

	Acantharea 
	-

	Alveolata 

Apicomplexa 
	Babesia bovis, Cryptosporidium parvum, Eimeria tenella, Plasmodium falciparum,      P. berghei, P. chabaudi, P. vivax, P. yoelii, Theileria annulata, Toxoplasma gondii

	Ciliophora 
	Paramecium tetraurelia, Tetrahymena sp.

	Dinophyceae 
	-

	Haplosporida
	-

	Apusomonadidae 
	-

	Cercozoa 
	Chlorarachnion reptans

	Core jakobids 
	Reclinomonas americana

	Cryptophyta 
	Guillardia theta (nucleomorph genome)

	Diplomonadida 
	Giardia intestinalis

	Entamoebidae 
	Entamoeba histolytica

	Euglenozoa 
	Leishmania major, Trypanosoma brucei

	Glaucocystophyceae 
	-

	Granuloreticulosea 
	-

	Haptophyceae 
	-

	Heterolobosea 
	-

	Lobosea 
	-

	Malawimonadidae 
	-

	Microsporidia 
	Encephalitozoon cuniculi, Spraguea lophii

	Mycetozoa 
	Dictyostelium discoideum

	Oxymonadida 
	-

	Parabasalidea 
	-

	Paramyxea 
	-

	Pelobiontida 
	-

	Plasmodiophorida 
	-

	Polycystinea 
	-

	Retortamonadidae 
	-

	Rhodophyta 
	-

	Stramenopiles 
	-

	Viridiplantae 
	

	Chlorophyta 
	Chlamydonas reinhardtii

	Streptophyta
	Alfalfa, barley, bean, coffee, corn, cotton, pine, poplar, potato, rice, sorghum, soybean, sugar cane, tomato, wheat 


	Fungi/Metazoa group
	

	Aconchulinia
	-

	Choanoflagellida
	-

	Fungi
	

	Ascomycota
	Saccharomyces cerevisiae, Schizosaccharo-myces pombe, Aspergillus nidulans, A. fumigatus, A. niger, Candida albicans, Coccidioides immitis, Debaryomyces hansenii, Fusarium proliferatum, Neurospora crassa, Pneumocystis carinii, Trichoderma reesei

	Basidiomycota
	Cryptococcus neoformans, Phanerochaete chrysosporium, Ustilago maydis 

	Chytridiomycota
	-

	Zygomycota
	-

	Metazoa
	

	Porifera (sponges)
	-

	Cnidaria 
	-

	Ctenophora 
	-

	Platyhelminthes 
	Schistosoma mansoni, S. japonicum 

	Nematoda 
	Caenorhabditis elegans, Ascaris suum, Brugia malayi, C. briggsae, Haemonchus contortus

	Annelida
	-

	Mollusca
	-

	Arthropoda
	Drosophila melanogaster, Anopheles gambiae, Aedes aegypti, A. albopictus, Amblyomma americanum, Glossina morsitans

	Chordata
	

	Urochordata 
	Ciona intestinalis (sea squirt), C. savignyi 

	Actinopterygii
	Takifugu rubripes (fugu), Danio rerio (zebrafish), Oreochromis niloticus (tilapia)

	Amphibia
	Ambystoma mexicanum (axolotl), 

Xenopus tropicalis (frog), X. laevis 

	Crocodylidae 
	-

	Aves (birds)
	Chicken, turkey 

	Mammals
	Human, mouse, rat, cat, chimpanzee, cow, dog


a Taxonomy is based on the NCBI Taxonomy database (see ♦3.6). Organisms with finished or almost finished projects are shown in bold; advanced-stage projects are shown in bold and italic; not all sequencing projects for each phylogenetic group are listed. Absence of sequencing projects for any representative of a phylogenetic group, according to the Entrez Genomes and Genomes OnLine databases, is indicated with a dash. 

The next question that we have to address is: why does comparative genomics work to give us information on gene functions and evolution? The general answer is provided by the neutral theory of molecular evolution and has been perhaps best captured by Motoo Kimura in his classic 1983 book [Kimura, 1983 #1192]. Neutral evolution is fast as convincingly demonstrated, for example, by the rapid deterioration of pseudogene sequences. Therefore, whenever we detect sequence conservation among proteins or nucleic acids from species separated by a long span of evolution (and this, in practical terms, involves any comparison between two species because these are typically separated by millions of years, time more than sufficient for a pseudogene to change beyond recognition), we can be sure that this conservation is due to the pressure of purifying selection driven by functional constraints. To put it in even simpler terms, what is conserved in a sequence is functionally important. Furthermore, and less trivially, the conserved amino acids and nucleotides almost always perform the same or similar functions, at least in structural and biochemical terms, in homologous protein, RNA or DNA molecules. 

These general concepts of molecular evolution indicate that comparative genomics is likely to be informative in principle, but they tell us nothing about the evolutionary distances at which it is expected to work. It had been known even in the pre-genomic era that certain proteins are highly conserved even between vertebrates and bacteria. However, the theory would not have been violated in any way if most of the proteins encoded in a genome showed significant sequence similarity only to homologs from closely related species. The very first genome comparisons, however, clearly indicated that this was not the case. At least when state of the art methods for sequence comparison are applied, homologs from more than one distantly related species are detectable for 70-80% of the proteins encoded in any prokaryotic genome [Tatusov, 2000 #209]. At present this fraction seems to be somewhat lower for some of the eukaryotes but only because the taxonomic density of genome sequencing so far has been insufficient; however, in the genomes of humans and mice, which diverged from their common ancestor 80-100 million years ago, nearly all genes are conserved. These crucial facts show that genome comparisons are likely to reveal important information on the functions and evolutionary relationships of the great majority of genes in any genome. 


We already claimed above that genomics would not make any sense at all had it not been for the possibility of informative genome comparison. Why is this so? In principle, one could imagine that a combination of theoretical methods for deciphering a protein’s three-dimensional structure from the sequence and experimental studies would allow functional identification without recourse to evolutionary analysis. However, neither of these approaches is up to the task. Some recent progress notwithstanding, there is no hope for the foreseeable future for ab initio methods to correctly predict structure of proteins on genome scale (or on any significant scale except, possibly, for some small proteins with simple folds) let alone their functions. As for genome-wide experimental characterization of protein functions, far-reaching studies have been conducted, such as elucidation of the phenotype of all gene knockout mutants, massive study of subcellular localization and identification of protein-protein interaction in bulk for yeast Saccharomyces cerevisiae [Ross-Macdonald, 1999 #1255; von Mering, 2002 #1254]. However, actual determination of the biochemical activity and more so of the biological function of a protein remains a unique task and, even for model organisms such as yeast or E. coli, the completion of this task for all gene products is not in sight. Indeed, for the great majority of organisms whose genomes have been sequenced, only a few genes (or none) have been studied experimentally (Fig. 1.2), and there is no hope for substantial progress in the near future. 
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Figure 1.2.  The current state of annotation of the complete genomes.

The data are calculated from the original genome papers [Blattner, 1997 #3; Bult, 1996 #7; Goffeau, 1996 #20; Lander, 2001 #271]. The number of experimentally characterized genes for E. coli are from the GeneProtEC and E.coli Proteome databases, this number for human is from the OMIM database. Yeast figures are from MIPS database; the number of genes characterized by similarity only and similar to unknown genes are from the COG database (see ♦3.5).

Indeed, even for E. coli, the workhorse of molecular genetics for the last 50 years, less than half of all genes have been ever studied experimentally. Prior to the completion of the genome of the archaeon M. jannaschii, only  four proteins have been characterized in that organism: two flagellins, RadA recombinase, and an adenylate kinase (on Fig. 1.2, this sector is just not visible). The availability of the genome sequence spawned significant efforts to characterize other genes in these organisms, but so far these studies made only a limited contribution (Fig. 1.2). The level of characterization of eukaryotic genomes is not much greater, although post-genomic efforts are improving the understanding of yeast proteome (see ♦3.5.2). In humans, most proteins are still being characterized as a result of the disease caused by a mutation in the corresponding or neighboring gene (see ♦3.5.3 and ♦6.2.2).

Under these circumstances, the theory of molecular evolution and, in particular, the simple connection between evolutionary conservation and function outlined above remain the crucial theoretical underpinning and, in fact, the main methodology of functional genomics. The comparative approach allows researchers to predict protein functions by transferring information from functionally characterized proteins of model organisms to their uncharacterized homologs and to delineate the functionally critical parts of protein (and RNA) molecules, such as catalytic or binding sites. Naturally, the quality of these inferences depends on the sensitivity and robustness of computational methods employed by comparative genomics. Nevertheless, we will argue that comprehensive comparative analysis of genomic sequences and the proteins they encode is an absoluite pre-requisite to further advances in our understanding of cell biology lies in. Actually, we tend to believe that comparative genomics is up to something grander, namely prioritization of targets for systematic experimental studies. This approach has been partially realized in structural genomics, and we see no reason why it cannot be profitably applied in functional genomics as well. We will be quite satisfied if this book makes just a small step in this direction. 
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Chapter II.  

Evolutionary Concept in Genetics and Genomics


2.1. Similarity, homology, divergence and convergence

2.1.1.  Defining the terms

In times past, gathering information on a potential partner in marriage or business routinely started with the simplest question “What family does he/she come from?”.  Affiliation with a certain family immediately provided a starting point for further inquiries, a general idea of what might be expected from a certain individual. Of course, families are never uniform, and classical literature from Homer to Shakespeare to Leo Tolstoy provides ample illustrations that any expectation based solely on family history should be taken with a grain of salt. Nevertheless, absent other clues to the character of the subject in question, an educated guess could be made based on the family structure and the individual’s position within that structure. 

Essentially the same approach is used in predicting potential functions for a newly sequenced gene and its protein product. Since it is technically impossible to experimentally test activity of the product of every single open reading frame in every organism, understanding their cellular roles routinely relies on family history.  

So how can one decide to what family does a given protein belong?  Sequence analysis aims at finding important sequence similarities that would allow one to infer homology. The latter term is extensively used in scientific literature, often without a clear understanding of its meaning, which is simply common origin. Indeed, since mid-19th century, zoologists and botanists have learned to make a distinction between homologous organs (e.g. bat's wing and human's hand) and similar (analogous) organs (e.g. bat's wing and butterfly's wing). Homologous organs are not necessarily similar; similar organs are not necessarily homologous.  For some reason, this simple concept gets extremely muddled when applied to protein and DNA sequences [Reeck, 1987 #454]. Phrases like "sequence (structural) homology", "high homology", “significant homology” or even "35% homology" are as common, even in top scientific journals, as they are absurd, considering the above definition. “Sequence homology” is particularly pervasive, having found its way even into the NLM’s Medical Subject Heading (MeSH) system. It has been assigned as a keyword to more than 80,000 papers in MEDLINE, including, to the embarrassment of the authors,  most of their own. In all the above cases, the term ‘homology’ is used basically as a glorified substitute for ‘sequence (structural) similarity’. 

All this misuse of ‘homology’, in principle, could be dismissed as an inconsequential semantic problem. One could even suggest that, after all, since it so happened that, in molecular biology literature, ‘homology’ has been often used to designate quantifiable similarity between sequences (or, less often, structures), the term should be redefined, legitimizing this usage. We believe, however, that the concept of homology is of major fundamental and practical importance and, on this occasion, semantics is important. We believe that  misuse of the term ‘homology’ has the potential of washing out the meaning of the very concept of common evolutionary descent [Reeck, 1987 #454]. 

A conclusion that two (or more) genes or proteins are homologous is a conjecture, not an experimental fact. We would be able to know for a fact that genes are homologous only if we could directly explore their common ancestor and all intermediate forms. Since there is no fossil record of these extinct forms, a decision on homology between genes has to be made on the basis of the similarity between them, the only observable parameter that can be expressed numerically and correlated with probability. The higher the similarity between two sequences, the lower the probability that they have originated independently of each other and became similar merely by chance (see ♦4.2). Indeed, if we take two sequences of 100 amino acid residues each that have, say, 80% identical residues, we can calculate the probability of this occurring by chance, find that it is so low that such an event is extremely unlikely to have happened in the last 5 billion years, and conclude that the sequences in question must be homologous (share a common ancestry). Even for proteins that share a much lesser degree of identity, alignment of counterparts from all walks of life is often straightforward and there seems to be no reasonable doubt of homology. For example, although sequences of the ribosomal protein L36 from different species (Fig. 2.1) exhibit considerable diversity and only a single amino acid residue is conserved in all the sequences, they align unequivocally and are indisputable homologs.

A real problem arises only when the similarity between two given sequences is much lower, so it is not immediately clear how to properly align them and how to calculate their degree of similarity.  Even when one comes up with a figure - say, two protein sequences have 10% identical residues and additional 8% of similar amino acid residues (a total of 18% similarity), does this imply homology or not? The only reasonable answer, of course, is: it depends. This and lower level of similarity might be indicative of homology provided that one or more of the following applies: (i) the similarity extends over a long stretch of sequence and is statistically significant by criteria known to be reliable (such as those applied in the BLAST algorithm and its derivatives); (ii) although the sequence similarity is low, the same pattern of identical and similar amino acid residues is seen in multiple sequences; (iii) the pattern of sequence similarity reflects the similarity between experimentally determined structures of the respective proteins or at least corresponds to the known key elements of one such structure. 

Aquifex aeolicus 

MKVRSSVKK---RCAKCKIIRRKGRVMVICE-IPSHKQKTG

Bacillus subtilis

MKVRPSVKP---ICEKCKVIRRKGKVMVICE-NPKHKQKQG

Campylobacter jejuni 
MKVRPSVKK---MCDKCKVVRRKGVVRIICE-NPKHKQRQG

Chlamydia trachomatis 
MRVSSSIKA---PSKGDKLVRRKGRLYVINKKDPNRKQRQA

Escherichia coli  

MKVRASVKK---LCRNCKIVKRDGVIRVICSAEPKHKQRQG

Helicobacter pylori   
MKVRPSVKK---MCDNCKIIKRRGVIRVICA-TPKHKQRQG 

Lactococcus lactis   
MKVRPSVKP---ICEYCKVIRRNGRVMVICPANPKHKQRQG

Mycobacterium leprae 
MKVNPSVKP---MCDKCRVIRRHRRVMVICV-DPRHKQRQG

Mycoplasma genitalium
MKVRASVKP---ICKDCKIIKRHRILRVICK-TKKHKQRQG

Rickettsia prowazekii 
MKVVSSLKSLKKRDKDCQIVKRRGKIFVINKKNKRFRAKQG

Synechocystis sp.     
MKVRASVKK---MCDKCRVIRRRGRVMVICSANPKHKQRQG

Treponema pallidum  
MKIRTSVKV---ICDKCKLIKRFGIIRVICV-NPKHKQRQG

Thermotoga maritima 
MKVQASVKK---RCEHCKIIRRKKRVYVICKVNPKHNQKQG

Vibrio cholerae   

MKVRASVKK---ICRNCKVIKRNGVVRVIC-SEPKHKQRQG

Xylella fastidiosa    
MKVLSSLKSAKTRHRDCKVIRRRGKIFVICKSNPRFKARQR

Yeast 

...

FKVRTSVKK---FCSDCYLVRRKGRVYIYCKSNKKHKQRQG

Rice




MKIRASVRK---ICTKCRLIRRRGRIRVIC-SNPKHKQRQG
Fruit fly 

...

FKVKGRLKR---RCKDCYIVVRQERGYVICPTHPRHKQMSM

Mouse   

...

FKTKGVIKK---RCKDCYKVKRRGRWFILCKTNPKHKQRQM

Human

 ...
FKNKTVLKK---RCKDCYLVKRRGRWYVYCKTHPRHKQRQM
Figure 2.1. Multiple alignment of the ribosomal protein L36 sequences. Conserved amino acid residues are showed in bold and/or shaded. The following proteins are listed: A. aeolicus, aq_075; B. subtilis, RpmJ; B. burgdorferi, BB0499; C. jejuni, Cj1591; C. trachomatis, CT786; E. coli, RpmJ; H. pylori, HP1297;  L. lactis, L153863;  M. leprae, ML1961; M. genitalium, MG174; R. Bacterial and yeast proteins are from COG0257; other proteins are from GenPept and have the following gi numbers: prowazekii, RP456; Synechocystis sp., sml0006; T. pallidum, TP0209; T. maritima, TM1476; V. cholerae, VC2575; X. fastidiosa, XF2440; Yeast, YPL183w; rice O. sativa, gi12020; fruit fly D. melanogaster, CG18767; mouse, gi13559402; human, gi7677060.

Later in this chapter and in the subsequent chapters as well we will have multiple opportunities to examine each type of evidence. Right here and now, however, it is pertinent to ponder the question: why is sequence and structural similarity considered to be evidence of homology (common origin) in the first place? Once we are confident that a particular similarity is not spurious but rather, by the above criteria, represents certain biological reality, is common ancestry the only explanation? The answer is: no, a logically consistent alternative does exist and involves convergence from unrelated sequences. The functional convergence hypothesis would posit that sequence and structural similarities between proteins are observed because the shared features are strictly required for the corresponding proteins to perform their identical or similar functions. To some degree, functional convergence per se is undeniable reality. In the broadest sense, convergence is observed between all proteins that contain disulfide bonds stabilizing their structure or between all enzymes that have the same catalytic residues (e.g. a constellation of histidines and aspartates). Even more prominent motifs associated with catalytic residues are found within different structural context and, in all likelihood, are due to convergence [Russell, 1998 #931; Russell, 1998 #930]. In the case of  disulfide-bonded domains, convergence can even fool sequence comparison programs, translating into statistically significant (albeit not overwhelming) sequence similarity. A rather dramatic manifestation of convergence is the recent description of a “homologous” disulfide-bonded domain in Wnt proteins and phospholipase A2 [Reichsman, 1999 #929], which was later recognized as “mistaken identity”, on the grounds of structural implausibility [Barnes, 1999 #928]. The classic work of Alan Wilson and colleagues comparing lysozymes from ruminants, langoor monkeys and leaf-eating birds is a textbook case that reveals the nature and extent of convergence in enzymes [Stewart, 1987 #934; Swanson, 1991 #933; Kornegay, 1994 #932].  These studies have shown beyond doubt that several amino acid residues that are required for functioning in the stomach have evolved independently (convergently) in different lineages of lysozymes. Importantly, however, this set of convergent positions consists of only 7 amino acid residues, a small subset of the residues that comprise the lysozyme molecule. 

A pan-adaptationist view of evolution would hold that functional convergence is the sole (or at least the principal) factor responsible for similarity between proteins. Formally disproving this paradigm might not be possible, but there seem to be at least two compelling arguments against it. The first argument stems from the notion of a continuous gradient of similarity between proteins. The convergence explanation is implausible for closely related sequences, such as those of the same protein from different mammalian species, which are usually 70-80% identical. For such sequences, the convergence hypothesis is equivalent to the statement that most, if not all amino acid residues in a protein are fixed through positive selection. This runs against the neutral theory of molecular evolution, which has shown that, given the known parameters of animal populations, positive selection could not be responsible for the majority of amino acid substitutions, which are therefore effectively neutral [Kimura, 1983 #1192]. Convergence could be a realistic possibility only for deep relationships between proteins, which involve limited similarities; indeed, the neutral theory does not preclude positive selection acting, say, on 10% of the positions in a protein. Then, the observed spectrum of similarities between proteins would have two distinct explanations: i) divergence from common ancestors for tight families with high levels of sequence similarity and ii) convergence from independent ancestors for larger groups of related proteins (superfamilies or classes), in which only limited similarity is observed. While not theoretically impossible, such an opposition of two vastly different modes of evolution, with a mysterious bottleneck separating the two phases, appears extremely unlikely. This view of evolution is clearly inferior to a single framework whereby all significant similarities observed within a class of proteins are interpreted within a single theoretical framework of divergence from an ultimate common ancestor. 

The second, probably most convincing argument against convergence as the principal explanation for the observed similarities between proteins has to do with the nature of structural constraints associated with a particular function. A fundamental observation is that one and the same function, such as catalysis of a specific enzymatic reaction, is often performed by proteins that have unrelated structures [Doolittle, 1994 #11; Galperin, 1998 #18]. In ♦2.2.3.5??? we discuss this phenomenon in some detail and present several specific examples. These observations directly indicate that the same function does not necessarily require significantly similar structures, which means that, as a rule, there is no basis for convergent evolution of extensive sequence and structural similarity between proteins. This is not to say that unrelated enzymes that catalyze the same reaction bear no structural resemblance whatsoever. Indeed, subtle similarities in the spatial configuration of amino acid residues in the active centers may exist, and these are precisely the kind of similarity that is expected to emerge due to functional convergence. These similarities, however, do not translate into structural and sequence similarity detectable by existing methods for comparison of proteins (at least in the overwhelming majority of cases). By inference, we are justified to conclude that, whenever statistically significant sequence or structural similarity between proteins or protein domains is observed, this is an indication of their divergent evolution from a common ancestor, or in other words, evidence of homology. We will revisit the issue of convergence versus divergence when discussing the deepest structural connections between proteins. 

Now that we have established the connection between similarity and homology, it should be emphasized that the demonstration of homology is central to the interpretation of similarities between proteins. The possibility to reach this conclusion, sometimes on the basis of limited similarity,  is, in fact, what makes sequence and structure comparison the major staples of computational biology and inspires the development of ever more sensitive methods for such comparisons. Indeed, under the notion of homology, a sequence or structural alignment becomes a powerful tool for evolutionary and functional inferences. Provided that the sequences are aligned correctly, homology implies that the corresponding residues in homologous proteins are also homologous, i.e. were derived from the same ancestral residue and, typically, inherit its function. If the residue in question is the same in a set of homologous sequences, we say that it is (evolutionarily) conserved. Thus, homology lends legitimacy to transfer of functional information from experimentally characterized proteins (or nucleic acids) to uncharacterized homologs, the single most common and practically important application of computational methods in molecular biology. Conversely, an alignment of non-homologous sequences is inherently meaningless and potentially misleading. Even if such an alignment attains a relatively high percentage of identity or similarity, no conclusions at all can be derived from the (spurious, in this case) correspondence between aligned residues. This is why the phrases ‘significant homology’, ‘percent homology’ and the like are so ludicrous. Homology is a qualitative notion of common ancestry. As long as homology is established, 10% identical residues between two protein sequences could be highly meaningful and amenable to functional interpretation; conversely, even 30% identity between two sequences that, in reality, are not homologous could be totally misleading. 

2.1.2. Conservation of protein sequence and structure in evolution

Protein structure is well known to be better conserved during evolution than protein sequence. There are numerous examples of proteins that show little sequence similarity, but still adopt similar structures, contain identical or related amino acid residues in their active sites and have similar catalytic mechanisms.  These shared features support the notion that, despite low sequence similarity, such proteins are homologous. 

Consider, for example, the structure of lysozyme, the enzyme that hydrolyzes bacterial cell walls (formal name: 1,4-beta-N-acetylmuramidase, EC 3.2.1.17). Different lysozymes are found in many organisms, from bacteriophages to mammals, and, in general, they show little sequence similarity to each other. The NCBI database of protein structures (see ♦3.3, http://www.ncbi.nlm.nih.gov/Structure) includes the lysozyme from goose Anser anser, which consists of 185 amino acid residues (Fig. 2.2). The sequence neighbors of this protein are lysozymes from black swan Cygnus atratus (same length, 96% identity), ostrich Struthio camelus (same length, 83% identity), chicken Gallus gallus (same length, 80% identity), as well as unannotated proteins from human (44% identity), mouse (43% identity), and B. subtilis bacteriophage SPBc2 (25% identity in 176 aa overlap). The vertebrate proteins in this list, including the uncharacterized ones, are obvious homologs of the goose lysozyme. The phage protein is more dissimilar, and in this case, the issue of homology is worth some investigation. However, the sequence similarity between lysozymes and this phage protein is statistically significant (as can be shown, for example, using PSI-BLAST, ♦4.3.4) and the multiple alignment shows a consistent pattern of shared residues, thus establishing homology (Fig. 2.2)

In contrast, the list of the closest structural neighbors of goose lysozyme (PDB code 153L, see ♦3.3) includes the classic chicken egg white lysozyme (e.g. PDB entry 3LZT, 11% identity) and lysozymes from E. coli bacteriophages  (PDB code 1AM7, 13% identity) and T4 (PDB code 149L, 11% identity). Nevertheless, a superposition of the three-dimensional structures of these three proteins clearly reveals the conserved structural core and many shared features (Fig. 2.3). 

Goose      1 RTDCYGNVNRIDTTGASCKTAKPEGLSYCGVSASKKIAERDLQAMD

Swan       1 RTDCYGNVNRIDTTGASCKTAKPEGLSYCGVPASKTIAERDLKAMD

Ostrich    1 RTGCYGDVNRVDTTGASCKSAKPEKLNYCGVAASRKIAERDLQSMD

Chicken    1 GTGCYGSVSRIDTTGASCRTAKPEGLSYCGVRASRTIAERDLGSMN

Mouse     21 SWGCYGNIRTLDTPGASCRIGRRYGLTYCGVRASERLAEVDRPYLL

Phage   1388 DQIKSGNITQYGIVTSTTSSGGTPSSTGGSYSG-------------

Goose      RYKTIIKKVGEKLCVEPAVIAGIISRESHAGKVLKNGWGDRGNGFGLM
Swan       RYKTIIKKVGEKLCVEPAVIAGIISRESHAGKVLKNGWGDRGNGFGLM
Ostrich    RYKALIKKVGQKLCVDPAVIAGIISRESHAGKALRNGWGDNGNGFGLM
Chicken    KYKVLIKRVGEALCIEPAVIAGIISRESHAGKILKNGWGDRGNGFGLM
Mouse      RHQPTMRLVGQKYCMDPAVIAGVLSRESPGGNYVVD-LGNIGSGLGMV
Phage      KYSSYINSAASKYNVDPALIAAVIQQESGFNAKARSGVG----AMGLM
Goose      QVDKRSHKPQGTWNGEVHITQGTTILINFIKTIQKKFPSWTKDQQLKG

Swan       QVDKRSHKPQGTWNGEVHITQGTTILTDFIKRIQKKFPSWTKDQQLKG

Ostrich    QVDRRSHKPVGEWNGERHLMQGTEILISMIKAIQKKFPRWTKEQQLKG

Chicken    QVDKRYHKIEGTWNGEAHIRQGTRILIDMVKKIQRKFPRWTRDQQLKG

Mouse      KETK--FYPPTAWKSETWVSQKTQTLTSSIKEIKTRFPTWTADQHLRG

Phage      QLMPATAKSLG-VNNAYDPYQNVMGGTKYLAQQLEKFGG-----NVEK

Goose      GISAYNAGAGNVRSYARMDIGTTHDDYANDVVARAQYYKQHGY  185

Swan       GISAYNAGAGNVRSYARMDIGTTHDDYANDVVARAQYYKQHGY  185

Ostrich    GISAYNAGPGNVRSYERMDIGTTHDDYANDVVARAQYYKQHGY  185

Chicken    GISAYNAGVGNVRSYERMDIGTLHDDYSNDVVARAQYFKQHGY  185

Mouse      GLCAYSKGPNFVRSNQDLNC-----DFCNDVLARAKYFKDHGF  197

Phage      ALAAYNAGPGNVIKYGGIPPFKETQNYVKKIMA---------- 1539
Figure 2.2.  Multiple sequence alignment of goose lysozyme and its closest homologs.  Absolutely conserved amino acid residues are shown in bold, conserved hydrophobic residues are shaded. 

A different method of structural comparison, DALI, used in the FSSP database (see ♦3.3), reports similarly low levels of sequence similarity between these enzymes, but also identifies them as the nearest structural neighbors. Importantly, structural and sequence comparisons are a two-way street: the structural alignment shown in Fig. 2.3 can be transformed into a multiple sequence alignment (Fig. 2.4), in which conserved positions, including the catalytic glutamate, can be readily identified [Evrard, 1998 #359]. 

This straightforward analysis makes us conclude that all lysozymes are homologous, which, in this case, is easy to accept given their similar, if not identical, functions. Furthermore, this analysis can be extended to a broad group of other transglycosylases, which all turn out to share a conserved catalytic domain with lysozyme and comprise a superfamily of homologous proteins [Mushegian, 1996 #937; van Asselt, 1999 #936]
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Figure 2.3.  Structural alignment of goose lysozyme (PDB code 153L), chicken egg white lysozyme (3LZT) and lysozymes from E. coli bacteriophages  (1AM7) and T4 (1L92).  Structures of the four different types of lysozyme were aligned using VAST (http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml) and displayed using Cn3D (http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml). 

Does structural similarity always imply homology? The answer is: most likely, for reasons discussed in the previous section, this is the case, provided that the similarity spans at least one complete domain. It is this type of similarity that is normally detected by structure comparison methods, such as VAST and DALI (♦3.3). Thus, the general rule of structure-homology correspondence seems to be straightforward: proteins that have the same fold according to structure classification systems, such as SCOP or CATH, are homologs. In principle, however, it is difficult to rule out that some folds are so advantageous thermodynamically that they have evolved several times independently (convergently). This possibility has been considered, for example, for the triose phosphate isomerase (TIM) barrel fold, given its high stability and symmetrical, quasi-periodical organization [Copley, 2000 #1265]. 

153L   RTDCYGNVNRIDTTGASCKTAKPEGLSYCGVSASKKIAERDLQAMDRYKTIIKKV

3LZT   ........................................kvfGRCELAAAMKRH

1AM7   .......................................................

1L92   .......................................................

153L   .GEKLC.VE.PAVIAGIISRESHAG..KVLK....NGWGD...R...........

3LZT   gLDNYRgYS.LGNWVCAAKFESNFN.........tQATNR...N...........

1AM7   .mvEIN.NQrKAFLDMLAWSEGTDngrQKTRnhgyDVIVGgelftdysdhprklv

1L92   ..........MNIFEMLRIDEG...........lrlKIYKdteG...........

153L   .......GNGFGLMQVDKRSH...............KP........QG..TWNGE

3LZT   ....tdgsTDYGILQINSRWWcndgrtpgsrnlcniPC........SAllSSDIT

1AM7   tlnpklkSTGAGRYQLLSRWW...............DayrkqlglkDF..SP..K

1L92   .......YYTIG.IGHLLT.........kspslnaakseldkaigrntngvITKD

153L   VHITQGTTILINF.IKTIQK...KFPS.WTKD..QQLKGGISAYNAGAGNVRSYA

3LZT   ASVNCAKKIVSDG.N........................GMNAWV..........

1AM7   SQDAVALQQIKERgALPM...........idR..GDIRQAIDRCSN....iwasl

1L92   EAEKLFNQDVDAA.VRGILRnakLKPVyDSLDavRRAAIINMVFQMGETGVAgft

153L   RMDIGT....................THDDYANDVV....ARAQYYKQHGY.

3LZT   .............................awRNRCK...gTDVQAWIRGCrl

1AM7   pGAGY...................gqfEHKA.DSLI....AKFKEAGgtvr.

1L92   nslrmlqqkrwdeaavnlaksrwynqTPNRAkrvittfrtgtwDAYK.....

Figure 2.4.  Structure-based sequence alignment of goose lysozyme (153L), chicken egg white lysozyme (3LZT) and lysozymes from E. coli bacteriophages  (1AM7) and T4 (1L92). Multiple alignment, generated by the DALI program [Holm, 1996 #357], was extracted from the FSSP database (http://www.ebi.ac.uk/dali/fssp/fssp.html). The residues that are structurally equivalent with ones in 153L are shown in upper case; those non-equivalent with ones in 153L are shown in lower case. The active-site Glu residue is shown in reverse shading.
On the other end of the spectrum, there is the question of how far does the notion of divergent evolution go. The over-reaching idea that all proteins evolved from a single primordial protein does not seem plausible. Indeed, there is no reason to believe that proteins of different structural classes, e.g. all-consisting exclusively of -helicesand all-consisting exclusively of -strands, have a common origin.  However, certain topological changes in protein folds seem to occur during evolution (see e.g. [Grishin, 2001 #935]), and the possibility of primordial common ancestry might become realistic when different folds within the same structural class are considered.  Interestingly, credible relationships between certain proteins that, according to SCOP, have different folds are detectable even via multiple iterations of PSI-BLAST. For example, statistically significant similarities between NAD-dependent oxidoreductases and S-adenosyl-methionine-dependent methyl-transferases are regularly detected in iterative database searches and the alignments produced are usually consistent with structural superpositions (N. V. Grishin and EVK, unpublished observations). There is, consequently, little doubt that these proteins, which formally have distinct folds, do share a common ancestry. In principle, such comparisons could be extended to all the numerous proteins whose structural core consists of parallel -sheets leading to the more or less radical proposal that they all have evolved from the same primordial “Rossmann-type” domain, which possibly possessed nucleotide-binding properties [Aravind, 2002 #1261]. The notion of divergence can be similarly extended to unite other types of structurally similar domains (e.g. different all--helical folds) into broad monophyletic classes. We find such generalizations attractive and credible, but caution is due and further elaboration of the methods for structure comparison, perhaps combined with theoretical analysis of evolutionary models, is required before more certainty is achieved on these potential distant evolutionary relationhips. We will return to the discussion of the possible nature of primordial proteins when considering the early stages of biological evolution from a comparative-genomic perspective (see ♦5.2???). 

Coming back to earth, it is important to note that approximately the same level of sequence similarity that is seen between distantly related proteins whose homology is established via a combination of iterative sequence searches and structural comparisons (roughly, 8-15% identity with gaps) can be expected to exist between two randomly chosen protein sequences. We already listed above some criteria that allow one to distinguish between true evidence of homology and spurious similarities. More generally, it cannot be emphasized more that, when this level of similarity between proteins is involved, there is no substitute (at least as of this writing) for a careful analysis of each particular relationship. Such an analysis usually pays off, allowing one to avoid false ‘fundamental discoveries’ and sometimes opening up new avenues of investigation. 

2.1.3 Homologs: orthologs and paralogs

As discussed above, one of the main objectives of DNA and protein sequence analysis is to identify homologous sequences and to employ sequence and structure conservation to predict common biochemical activities and biological functions of proteins and non-coding sequences. The second principal goal of sequence analysis is evolutionary reconstruction per se. To address each of these goals, it is critical to distinguish between two principal types of homologous relationships, which differ in their evolutionary history and functional implications. The two categories of homologs are orthologs, defined as direct evolutionary counterparts derived from a single ancestral gene in the last common ancestor of the given two species, and paralogs, which are homologous genes evolved through duplication within the same (perhaps ancestral) genome. These definitions were first introduced by Walter Fitch in 1970 [Fitch, 1970 #12; Fitch, 2000 #1267] and remained virtually unknown to molecular biologists until the advent of genomics, at which time it has become clear that the distinction between the two was crucial for understanding evolutionary relationships between genomes and gene functions. In evolutionary terms, robust identification of orthologs is essential because otherwise any evolutionary scenarios, for example, attempts to reconstruct gene repertoire and gene order in ancestral genomes (see discussion below), are bound to be meaningless. With respect to functional analysis, orthologs typically retain the same, ancestral function, which makes transfer of functional information within a set of orthologs generally reliable. The evolutionary basis of such conservation of function among orthologs appears fairly obvious. Indeed, consider a gene (or, rather, its product) in an ancestral species that was responsible for carrying out some essential biological function. As long as the progeny of this ancestor carries a single copy of the gene in question and does not evolve or acquire an unrelated gene capable of providing the same function, it has to rely on the original gene to continue carrying out that function. This puts orthologs under strict evolutionary constraints and makes them perform the same function as long as this function remains essential for survival or at least confers a substantial selective advantage to its bearers. 

In contrast, paralogs tend to evolve new functions and study of paralogous families may provide means for understanding adaptation. As first detailed by Susumu Once in his classic 1970 book  “Evolution by Gene Duplication” [Ohno, 1970 #386], once paralogs emerge as a result of a gene duplication, the pressure of purifying selection decreases for either one (in Ohno’s original model) or, under new, more elaborate models [Lynch, 2000 #1264; Kondrashov, 2002 #1262; Wagner, 2002 #1260] both paralogs, which eventually enables evolution of new functions. In each sequenced genome, a substantial fraction of genes (in the range of 25 to 80% [Labedan, 1995 #387; Huynen, 1998 #391; Jordan, 2001 #393; Lespinet, 2002 #1271]) belong to families of paralogs, each of which reflects functional diversification via duplications that occurred at different stages of evolution. Classic examples include animal olfactory receptors or nuclear hormone receptors, vast families in which an astonishing repertoire of specificities evolved as the result of multiple duplications.

The interplay of speciation events, that lead to divergence of orthologs, and duplications, that give rise to paralogous families, results in complex evolutionary scenarios, which may be hard to resolve (Fig. 2.5A). When duplication precedes speciation, each of the paralogs gives rise to a distinct line of orthologous descent. In contrast, when duplication occurs after a particular speciation event in just one lineage or in both lineages independently (this can be referred to a lineage-specific duplication or lineage-specific expansion of a paralogous family; see), a situation ensues whereby a one-to-one orthologous relationship cannot be delineated in principle (Fig. 2.5). Instead, all one can say is that family AB in lineage 1 is orthologous to family A’B’C’ in lineage 2 or, in other words, that A and B are co-orthologs (a new term recently introduced to more accurately describe such relationships [Remm, 2001 #1263]) of A’, B’ and C’ (Fig.2.5). Clearly, in such a case, the functional correspondence between the two orthologous families of paralogs is less straightforward than it is between regular, one-to-one orthologs. The relationships between homologs could become particularly tricky if some genes in certain lineages have been lost during evolution (a phenomenon referred to as lineage-specific gene loss, see ♦2.2.3). In such cases, genes that, at face value, appear to be orthologous, may actually be paralogs, whereas the genuine orthologs might have been lost (Fig. 2.5B). Once again, functional inferences made on the basis of this type of homologous relationships require particular caution. 

Reliable identification of orthologs is only possible when complete sets of genes from two or more genomes are compared. Indeed, if one of the compared genomes is incomplete, it always remains a possibility that the true ortholog of the given gene is “hiding” in the unsequenced part. Even with complete genomes, identification of orthologous gene sets is not a simple task because of the complex  evolutionary scenarios, which involve multiple duplications, speciations and, most importantly, lineage-specific gene loss events. In principle, complete phylogenetic analysis of all groups of homologous genes is required to decipher true orthologous relationships. This is an extremely labor-intensive task; moreover, it is well known that not all phylogenetic trees provide the required resolution. “Shortcut” approaches have been developed to circumvent the need for comprehensive phylogenetic analyses, and some of these are discussed below (see ???). 
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Figure 2.5.  Orthologous and paralogous genes in three lineages descending from a common ancestor. Gene sets I, II and III should be considered co-orthologous (see text)

2.2.  Phenomenology of Genome Evolution

Although still a young discipline, comparative genomics has matured enough to allow delineating the most common and important types of events that occur during genome evolution. These include different forms of genome rearrangement, gene duplication, and more specifically, lineage-specific expansion of gene families, lineage-specific gene loss, horizontal gene transfer, and non-orthologous gene displacement. 

2.2.1  Evolution of gene order

Comparison of the first completely sequenced genomes promptly showed that gene order is much less conserved than protein sequences.  Genomes of closely related bacteria Mycoplasma genitalium and M. pneumoniae, for example, consist of six large segments with similar organization of genes, but the segments themselves are shifted relative to each other and partially scrambled in the two genomes [Himmelreich, 1997 #22].  Even larger differences were found between Haemophilus influenzae and E. coli, or even between E. coli K-12 and its pathogenic relative E. coli 0157:H7 [Tatusov, 1996 #42; Perna, 2001 #346].  In fact, any comparison between more or less distantly related prokaryotic genomes, e.g. bacteria or archaea from different genera within the same family, looks completely disordered at a large scale where only conservation of several dozen genes would have been noticeable (Figure  ).  On a smaller scale, there is, however, important conservation of gene order within operons, the units of prokaryotic gene coregulation. Extensive genome comparisons showed that, in each genome, 5% to 25% of the genes belong to conserved (predicted) operons (i.e. strings of genes that are shared with at least one relatively distant genome) [Wolf, 2001 #538].  As should be expected, this fraction gradually increases as new genomes are sequenced. A few operons are incredibly conserved, in fact, invariant in all prokaryotes. Primarily these ancient operons consist of genes for ribosomal proteins and some other components of the translation machinery. 

2.2.2 Lineage-specific gene loss

A quick look at the genome sizes of the organisms with completely sequenced genomes  (Table 1.4) shows that many pairs of closely related organisms have vastly different numbers of genes. Thus, E. coli K-12 has seven times more genes than the aphid symbiont Buchnera sp., which is located right next to E. coli in the 16S rRNA-based phylogenetic tree. Two more representatives of gamma-proteobacteria, H. influenzae and P. multocida, have 2.5 times fewer genes than E. coli.  Huge discrepancies in the gene number can be found even within the same genus. The gene complement of Mycoplasma pneumoniae, for example, includes all the 480 genes of M. genitalium, as well as 197 additional genes. Mycobacterium leprae is closely related to M. tuberculosis, but has 1,200 less genes.  The same phenomenon is found throughout eukaryotes. Baker’s yeast S. cerevisiae, for example, has about 6,000 genes, which is at least 2,000 genes less than in multicellular ascomycetes such as Aspergillus. Furthermore, a eukaryotic intracellular parasite, microsporidian Encephalitozoon cuniculi, which has been identified as a derived fungus in several consistent phylogenetic studies, has only ~2,000 genes [Katinka, 2001 #1025], which points to a truly dramatic scale of gene loss. About 300 genes were apparently lost by S. cerevisiae after its radiation from the common ancestor with fission yeast Schizosaccharomyces pombe, although the latter has even fewer genes than S. cerevisiae [Aravind, 2000 #384].  All these cases show that certain phylogenetic lineages experienced a significant gene loss, often linked to the adaptations to the parasitic lifestyle (H. influenzae, P. multocida, M pneumoniae, M. genitalium, M. leprae), or intracellular symbiosis (Buchnera sp.), or just adaptation to a constant (narrow) range of environmental conditions. Indeed, parasites might not need a complicated web of metabolic pathways for the biosynthesis of amino acids, nucleotides and vitamines as long as they can fetch those nutrients from their host. 

In the same vein, the well-known absence of the biosynthetic pathways for 12 amino acids in humans and other vertebrates was probably made possible by the abundance of these amino acids in the plant food consumed by their common ancestor at the time of their divergence. 

An analysis of gene loss in bacterial parasites showed that, in many cases, it led to the elimination of entire pathways, for example biosynthetic pathways leading to amino acids, nucleotides, and vitamins (see ♦6.1). For example, a number of parasitic bacteria lack pyrimidine biosynthesis genes that are present in their free-living relatives (Fig. 2.6). This has, of course, a simple evolutionary explanation: if the necessary nutrient is available in the surrounding medium, the genes responsible for its synthesis become redundant and can be eliminated. Moreover, once at least one of these genes is lost, expression of the others would lead to the accumulation of metabolic intermediates that can be harmful for the cell.  This would result in an evolutionary pressure towards coordinated loss of all the genes in a pathway [Galperin, 1999 #19]. A similar trend towards coelimination of functionally connected groups of proteins, such as the signalosome and the spliceosome components, has been seen in S. cerevisiae [Aravind, 2000 #384]. 
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Figure 2.6.  Presence of pyrimidine biosynthesis genes in organisms with completely sequenced genomes. Each rectangle signifies an enzyme of the pyrimidine biosynthesis pathway, indicated by its gene name and COG number. Alternative enzymes catalyzing the same reaction are shown side-by-side. Each COG is accompanied by the list of organisms represented in this particular COG (the phylogenetic pattern, see ♦2.1.4). The species abbreviations are as follows: a, Archaeoglobus fulgidus; o. Halobacterium sp., m, methanogens (M. jannaschii and M. thermoautotrophicum); p, thermoplasmas (T. acidophilum and T. volcanii); k, pyrococci (P. horikoshii and P. abyssi); z, Aeropyrum pernix; y, Saccharomyces cerevisiae; q, Aquifex aeolicus; v, Thermotoga maritima; d, Deinococcus radio- durans; r, mycobacteria (M. tuberculosis and M. leprae); l, Lactococcus lactis and Streptococcus pyogenes; b, bacilli (B. subtilis and B. halodurans); c, Synechocystis sp.; e, Escherichia coli; f, Pseudomonas aeruginosa; g, Vibrio cholerae; h, Haemo-philis influenzae; s, Xylella fastidiosa; n, Neisseria meningitidis, u, Helicobacter pylori and Campylobacter jejuni; j, Mesorhizobium loti and Caulobacter crescentus, x, Rickettsia prowazekii; i, chlamidiae (C. trachomatis and C. pneumoniae); t, spirochetes (Borrelia burgdorferi and Treponema pallidum), and w, mycoplasmas (M. genitalium, M. pneumoniae, and Ureaplasma urealyticum). 

 In a remarkable exception to the principle of coordinated gene loss, there are cases when only a certain (initial) part of the pathway is eliminated.  Figure 2.6 clearly shows that the complete pyrimidine biosynthesis pathway is missing in M. genitalium and M. pneumoniae, whereas the H. influenzae genome lacks genes for the first three reactions of this pathway, but contains the complete set of genes for all the enzymes that catalyze the conversion of dihydroorotate into CTP.  Thus, while H. influenzae is evidently incapable of de novo pyrimidine biosynthesis, it has preserved certain metabolic plasticity to accommodate whatever pyrimidine it can get from its host. A similar trend can be seen in even smaller genomes of B. burgdorferi and C. trachomatis that have lost the majority of the pyrimidine biosynthesis genes, but still contain genes coding for the downstream steps of this pathway. 

2.2.3  Lineage-specific expansion of gene families

We have already mentioned the evolutionary importance of gene duplication that leads to the emergence of paralogs, which may assume new functions, sometimes substantially different from those of the ancestral gene. Genome comparisons suggest that lineage-specific expansion of paralogous gene families, which in some cases amount to a sizable fraction of a genome, is one of the major mechanisms of adaptation [Jordan, 2001 #393; Lespinet, 2002 #1271]. Analysis of  lineage-specific gene expansions can provide useful clues to the evolution of each particular lineage.  Table 2.1 shows that, indeed, in pathogens M. tuberculosis and H. pylori the most conspicuous expansions are those of genes encoding factors participating in interactions with and survival within the host organisms. In contrast, in free-living autotrophs Synechocystis sp. and A. fulgidus, the largest expansion involves signal transduction proteins, sensor histidine kinases and related ATPases. 

Table 2.1.  Lineage-specific expansions of paralogous families in prokaryotic genomesa  
	Species
	No. copiesa
	Protein family 
	Likely function

	M. tuberculosis
	90
	PPE
	Surface antigen, interacts with host cells

	M. tuberculosis
	67
	PE
	Surface antigen, interacts with host cells

	H. pylori
	34
	HOP 
	Surface antigen, interacts with host cells

	Synechocystis sp.
	30
	His kinase
	Sensing of environmental stimuli

	M. pneumoniae
	25
	-
	Unknown

	M. tuberculosis
	24
	MCE1


	Entry and survival inside the macrophages

	A. fulgidus
	24
	His kinase-type ATPase
	Sensing of environmental stimuli

	Synechocystis sp.
	22
	GGDEF domain
	Signal transduction


aThe data are from [Ponting, 1999 #39]. 

In eukaryotes, lineage-specific expansion of certain protein families is even more evident than in prokaryotes. A comparison of the genome counts of the signaling domains in C. elegans and S. cerevisiae against their numbers in genomes of some mostly free-living bacteria and archaea (Table 2.2) shows that certain domains are dramatically expanded in C. elegans, even when the greater number of genes in the worm is taken into account (see also the counts of ankyrin repeats in C. elegans in ♦3.2.2): 

Table 2.2  Expansion of signaling domains in C. elegansa 

	Species
	Proteins
	Ser/Thr/ Tyr kinase
	Ser/Thr/Tyr phosphatase
	BRCT
	SH3
	VWA
	WD40

	C. elegans
	19,100
	435
	112
	26
	58
	65
	127

	S. cerevisiae
	6,500
	116
	14
	10
	24
	3
	110

	E. coli 
	4,289
	3
	1
	1
	1
	4
	0

	B. subtilis
	4,100
	4
	0
	1
	6
	5
	0

	M. tuberculosis
	3,918
	13
	1
	1
	0
	4
	4

	Synechocysti. 
	3,169
	12
	0
	1
	3
	4
	2

	A. fulgidus
	2,420
	4
	0
	0
	0
	2
	0

	M. thermoauto-trophicum 
	1,869
	4
	0
	0
	0
	2
	0

	M. jannaschii
	1,715
	4
	2
	0
	0
	3
	0

	A. aeolicus
	1,522
	2
	0
	1
	0
	1
	0


a The data are based on ref. [Ponting, 1999 #39]. Domain abbreviations are as in the SMART database [Schultz, 2000 #257]: BRCT - Breast cancer C-terminal domain; SH3 - Src homology 3 domain; VWA - von Willebrand factor A domain; WD40 - Trp,Asp-repeat domain.  

2.2.4  Horizontal (lateral) gene transfer

Horizontal (lateral) gene transfer, as opposed to the standard (vertical) transfer from ancestors to progeny, refers to acquisition of genes from organisms that belong to other species, genera, or even higher taxa. Some mechanisms of lateral gene transfer between different strains of the same species or between closely related species are well established and include transfer of genes via conjugation, acquisition of plasmids, and viral (phage) infection. These events are common and do not stir much controversy. After all, it was the experiment on pneumococcal transformation by heterologous DNA by Avery, MacLeod and McCarthy that proved the role of DNA in heredity. However, in the pre-genomic era, the long-range lateral gene transfer across taxa has been considered to be extremely rare and more or less inconsequential in the general scheme of evolution [Smith, 1992 #277]. The only instance where the fact and impact of horizontal gene transfer have been clearly recognized was the apparent massive flow of genes from the genomes of endosymbiotic organelles, mitochondria in all eukaryotes and particularly chloroplasts in plants, to the eukaryotic nuclear genome [Gray, 1992 #281; Gray, 1999 #279].

As soon as comparisons of multiple, complete genome sequences representing diverse taxa were performed, it has become apparent that lateral gene transfer was too common to be dismissed as inconsequential [Doolittle, 1999 #283]. First, horizontal gene flow between closely related species turned out to be much more pervasive than ever suspected before. Lawrence and Ochman estimate, for example, that as much as one quarter of the E. coli genome consists of recently acquired foreign genes [Lawrence, 1998 #167; Ochman, 2000 #1266]. The rate of influx and loss of new genes is even faster: it appears that in the last 100 million years, i.e. since the split between Escherichia and Salmonella lineages, E. coli has probably picked up and lost as much DNA as it has now [Lawrence, 1997 #169; Lawrence, 1998 #167]. 

In addition, genome comparisons helped ncover numerous cases of (predicted) horizontal gene transfers between organisms belonging to distinct phylogenetic lineages. Archaeal genomes presented a particularly striking picture with some genes having close homologs only among eukaryotes and others being much more similar to their bacterial homologs than to those from eukaryotes if such were detectable at all [Koonin, 1997 #31]. With some exceptions, the “bacterial” and “eukaryotic” proteins in archaea were divided along functional lines, with those involved in information processing (translation, transcription and replication) showing the eukaryotic affinity, and metabolic enzymes, structural components and a variety of uncharacterized proteins appearing “bacterial” [Koonin, 1997 #31; Makarova, 1999 #103]. Because the informational components generally appear to be less prone to horizontal gene transfer [Ochman, 2000 #1266] and in accord with the ‘standard model’ of early evolution, whereby eukaryotes share a common ancestor with archaea [Woese, 1990 #455], these observations could be explained by massive gene exchange between archaea and bacteria [Koonin, 1997 #31]. This hypothesis was further supported by the result of genome analysis of two hyperthermophilic bacteria, A. aeolicus and T. maritima. Each of these genomes contained a significantly greater proportion of “archaeal” genes than any of the other bacterial genomes, in an obvious correlation between the similarity in the life styles of evolutionarily very distant organisms (bacterial and archaeal hyperthermophiles) and the apparent rate of horizontal gene exchange between them [Aravind, 1998 #1268; Nelson, 1999 #35]. Further analyses discovered genes of clear bacterial origin in the hyperthermophilic archaeon P. furiosus, which proved lateral gene transfer from bacteria to archaea [DiRuggiero, 2000 #348]. 

The demonstration of the evolutionary prominence of lateral gene transfer may be justly considered the single greatest change in perspective in biology in general brought about by comparative genomics. A new round of controversy has been sparked by the discovery of genes of possible bacterial origin in the human genome [Lander, 2001 #271]. In chapter 5???, we revisit this issue and discuss implications of large-scale lateral gene transfer for the “tree of life”. 

2.2.5  Non-orthologous gene displacement

Proteins responsible for the same function in different organisms typically show significant sequence and structural conservation and can be inferred to be orthologs. However, there are exceptions to this rule [Doolittle, 1994 #11; Galperin, 1998 #18]. Examples of apparently unrelated enzymes with the same specificity were noted as early as 1943 when Warburg and Christian described two distinct forms of fructose 1,6-bisphosphate aldolase in yeast and rabbit muscle, respectively. These two enzymes, referred to as class I and class II aldolases, were later shown to be associated with different phylogenetic lineages and have different catalytic mechanisms and little structural similarity [Marsh, 1992 #460; Blom, 1997 #461]. Unrelated enzymes that catalyze the same reaction have been referred to as analogous, as opposed to homologous, enzymes [Fitch, 1970 #12; Galperin, 1998 #18]. 

Comparative analysis of complete genomes shows that cases like this are common. Strikingly, only about 80 orthologous protein sets are universally represented in all sequenced genomes. This number is much lower than the number of essential functions (see ♦5.3???), indicating that other such functions are performed by unrelated or at least non-orthologous proteins in different life forms. This major evolutionary phenomenon, which came to light already in the first comparisons of sequenced genomes, was dubbed non-orthologous gene displacement [Koonin, 1996 #29].  The full range of mechanisms leading to non-orthologous gene displacement is not known. However, for cases when essential functions are involved, the main sequence of events appears to be clear. Since an organism cannot survive without a protein ensuring that an essential function is performed, transient functional redundancy, when an organism has both forms of the respective protein, appears to be a pre-requisite of non-orthologous gene displacement [Koonin, 1996 #1270]). Such redundancy might evolve via horizontal gene transfer or via recruitment of a protein whose original function was different from the given one (recruitment is likely to occur after gene duplication). The redundancy phase is followed by lineage-specific gene loss, resulting in non-orthologous gene displacement (Fig. 2.7). In case of non-essential functions, the redundancy phase might be bypassed, with non-orthologous gene displacement evolving directly via horizontal gene transfer or recruitment. 
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Figure 2.7. A scenario for the origin of non-orthologous gene displacement via an ancestral redundancy stage and lineage-specific gene loss.

Enzyme recruitment is a common evolutionary phenomenon leading to NOGD. Typically, one of the two non-orthologous enzymes with the same catalytic activity belongs to a diverse family of enzymes and could have evolved by shifting the substrate specificity of a related but distinct enzyme [Galperin, 1998 #18]. A straightforward example are the two unrelated forms of gluconate kinase. Gluconate kinases from E. coli, yeast and S. pombe form a narrow conserved group. In contrast, the gluconate kinase of B. subtilis belongs to the so-called FGGY family of carbohydrate kinases, which also includes glycerol kinase (GlpK), D-xylulose kinase (XylB), L-fuculose kinase (FucK), and L-xylulose kinase (LyxK). The scenario of enzyme recruitment in this case seems straightforward: a duplication of the glpK or xylB gene in the Bacillus lineage produced a new paralog, which accumulated several mutations resulting in a shift of substrate specificity from glycerol (or xylulose) to gluconate. 

Enzyme recruitment seems to be particularly common in organisms that have adapted to novel ecological niches by developing unusual, idiosyncratic metabolic pathways. For example, most of the enzymes that are responsible for the biosynthesis of polyketide antibiotics in actinomycetes appear to be recent recruits from the enzymes of fatty acid biosynthesis; enzymes that hydrolyze man-made halogenated hydrocarbons have close relatives among regular metabolic enzymes. Perhaps the most remarkable example is the evolution of apyrases (ATP-diphosphohydrolases, EC 3.6.1.5), the enzyme secreted by blood-sucking insects to the blood of human or other mammalian victims in order to prevent or slow down blood clotting [Valenzuela, 1998 #482].  Because ADP in the blood can serve as a trigger of blood clotting, any enzyme that could hydrolyze it would give the hematophagous insect a substantial evolutionary advantage. As a result of this evolutionary pressure toward increasing salivary apyrase activity, insect apyrases are found in at least three different forms, related, respectively, to ATPases, 5’-nucleotidases, and inositoltriphosphate phosphatases [Galperin, 1998 #18] [Valenzuela, 1998 #482]. 

It is worth noting that the described mechanism of enzyme recruitment can be legitimately described in terms of independent, convergent evolution of the same enzymatic activity. In Chapter 6, when describing comparative genomic of metabolic pathways, we will encounter numerous cases of non-orthologous gene displacement and, specifically, enzyme recruitment.

2.2.6.  Phyletic patterns (profiles)

As a result of numerous cases of lineage-specific gene loss, horizontal gene transfer and non-orthologous gene displacement, most protein families show "patchy" distribution among the sequenced genomes. The data from the database of Clusters of Orthologous Groups of proteins (COGs, ♦3.4) show that the majority of COGs are represented in just three or four phylo-genetic lineages; universal or nearly universal COGs are much less common. 

Figure 2.8.  Distribution of different phylogenetic lineages in the COG database. The plot shows the number of protein families (COGs) in the COG database (♦3.4), which include proteins from the given number of phylogenetic lineages out of the total of 26 lineages [Tatusov, 2000 #209].

This distribution can be conveniently presented in the form of phyletic patterns (profiles), which show the presence or absence of a COG in each analyzed species. This approach, initially introduced as a feature of the COGs [Tatusov, 1997 #43] and subsequently adapted, with different modifications, by several research groups [Ragan, 1998 #546; Pellegrini, 1999 #135; Marcotte, 2000 #543], provides a convenient way to compare complete genomes. For example, a quick examination of the phyletic patterns of the two distinct forms of phosphoglycerate mutase (cofactor-dependent form GpmA and cofactor-independent form GpmI [Jedrzejas, 2000 #894]) immediately shows several interesting trends (the species symbols are the same as in Fig. 2.6):

      ------y---rl--e--hsn-j-it- GpmA COG0588  

      -o----------bcefg---u----w GpmI COG0696  

Firstly, the two forms have largely complementary phyletic patterns, a clear sign of non-orthologous gene displacement. Only E. coli encodes both forms of the enzyme, whereas other organisms encode either one or the other.  Secondly, several organisms do not encode either of the two forms of this enzyme. Assuming that glycolysis is an essential metabolic pathway, glycolytic enzymes should be encoded in every genome (we are aware of one exception, Rickettsia, which does not encode any glycolytic enzymes; see ♦6.1.1). Therefore, one might suggest that there should be an additional, third form of phosphoglycerate mutase, encoded in archaeal genomes and also in T. maritima, A. aeolicus, and D. radiodurans. Indeed, sequence analysis of those genomes shows that they all encode an uncharacterized enzyme, distantly related to alkaline phosphatase and cofactor-independent phosphoglycerate mutase. Based on the conservation of active site residues, this archaeal enzyme has been predicted to have a phosphoglycerate mutase activity [Galperin, 1998 #104; Galperin, 2001 #762]; very recently, this prediction has been experimentally confirmed by two independent groups [Graham, 2002 #1063; van der Oost, 2002 #1064]. Remarkably, the phyletic pattern of the respective COG complements the union of the patterns for the two forms of phosphoglycerate mutase, which ensures the presence of at least one type of phosphoglycerate mutase in every species, except for Ricketisia:

 ------y---rl--e--hsn-j-it- GpmA COG0588  

 -o----------bcefg---u----w GpmI COG0696  

 a-mpkz-qvd----------------   -  COG3635

 + ——————————————————————————————————————————

 aompkzyqvdrlbcefghsnuj-itw 

Figure 2.9.  Phyletic patterns of three different forms of phosphoglyce-rate mutase. The species symbols are as in Fig. 2.6.

This summation also shows that there is no necessity in yet another form of phosphoglycerate mutase, which has been designated GpmB in E. coli (see ♦3.2.1.3), but has never been experimentally demonstrated to have this activity:

 ---p--yqvdrlbcefghs--j---- GpmB COG0406   

Indeed, recent data show that this protein does not have a phosphoglycerate mutase activity, at least in B. subtilis. Instead, it appears to function as a non-specific sugar phosphatase [Rigden, 2001 #414].  This example shows the impressive power of the comparative-genomic approach for prediction of gene functions. This approach is discussed in much greater detail later in this book (see ♦4.6).  

Outlook

In this chapter, we discussed some general principles of molecular evolution that are central to the comparative-genomic approaches and major evolutionary phenomena that became apparent as the result of genome comparison. The above discussion is obviously quite sketchy. However, this should be sufficient for understanding the principles underlying methods of computational genomics and the organization of various databases, which we discuss in next two chapters. In the subsequent chapters (♦5 and ♦6), we are going to return to problems of genome evolution at a new level and illustrate some of the concepts outlined above with detailed case studies. 

2.3.  Further Reading

Chapter III.  

Information Sources for Genomics

The ultimate goal of genome analysis is understanding both the biology of each particular organism in both functional and evolutionary terms, which requires combining disparate data from a variety of sources. Reliable information resources, compiling data on sequenced genomes and linking it to the wealth of associated functional data, are indispensable for comparative genomics. The amount of genome-related information stored in public databases and freely available to anyone with an Internet access is, in fact, enormous. It has been our experience, however, that many researchers who should benefit the most from this information are not at ease with navigating these databases, let alone assessing the reliability of the data. This chapter is an attempt to bring the genomic databases closer to their principal users, molecular biologists and biochemists. 

3.1.  General Purpose Sequence Databases

To a computer scientist, developing a biological database might seem like a daunting task.  Most fields are hard to define, and there always would be a need to create new ones. Assigning an object to a particular field is almost never final, and there are numerous exceptions to almost any rule.  There is a lot of connectivity between different objects, and this, too, is subject to change. Small wonder that the problem of optimal structure for a biological database is one of the most hotly debated topics at the bioinformatics conferences and in such journals as Bioinformatics or Journal of Computational Biology.  We chose not address those questions here and, instead, refer the reader to several recently published books (see Further Reading at the end of this part).  This chapter is intended for a naïve user (a biologist, not a computer scientist) and is limited to the discussion of the relative (dis)advantages of each of the available databases for certain common tasks.

3.1.1.  Nucleotide sequence databases  

What makes the public nucleotide sequence databases so important for modern biology? To ensure the availability of the sequence data to the general public, none of the principal scientific journals would publish a paper describing a nucleotide or protein sequence unless this sequence has been deposited in one of the three major international nucleotide sequence databases: GenBank at the NCBI (Bethesda, Maryland, USA); the European Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database at the European Bioinformatics Institute (EBI) in Hinxton, near Cambridge, UK; and the DNA Database of Japan (DDBJ) at the National Institute of Genetics in Mishima, Japan. These databases form an International Nucleotide Sequence Database Collaboration and exchange updates on a daily basis, so that the DNA sequence information kept in each database is essentially the same and is arranged using common principles (see http://www.ncbi.nlm.nih.gov/collab). Although data representation in GenBank, EMBL, and DDBJ might differ slightly, each nucleotide sequence has the same accession number in all three databases. The information stored in these databases is available to the public by anonymous ftp and through the World Wide Web.  This means that one can connect to the web site of any of the three databases, GenBank (http://www.ncbi.nlm.nih.gov/Entrez), EMBL (http://www.ebi.ac.uk), or DDBJ (http://www.ddbj.nig.ac.jp), and get the same nucleotide sequence using the same accession number. Thus, a sequence with a given GenBank accession number could have been originally submitted to EMBL or DDBJ, and vice versa. In everyday practice, people often refer to the public nucleotide database simply as "GenBank" when they actually mean the combination of all three public databases.  

It is important to note, however, that although the nucleotide sequence data in GenBank, EMBL, and DDBJ is the same, these three databases differ in the additional services that they offer. NCBI, for example, maintains several other databases in addition to GenBank, such as the Taxonomy database (♦3.7) and PubMed (♦3.8).  Accordingly, each nucleotide entry at the NCBI web site is hyperlinked to the corresponding journal article in PubMed (if available) and to the taxonomic position of the source organism.  

3.1.2.  Protein sequence databases

For most of the 20th century, researchers had at least some idea of what proteins they were studying, and protein sequences were coming mostly from projects that investigated a particular enzyme or a group of enzymes.  As a result, the first protein sequence database, Atlas of Protein Sequence and Structure, created by Margaret Dayhoff in the early 1960's [Dayhoff, 1965 #380; Dayhoff, 1968 #394], contained very few uncharacterized proteins and was used mainly to document and investigate sequence diversity between homologous proteins (e.g., globins or cytochromes) from diverse organisms. This trend continued for a few years even after 1977, when Maxam and Gilbert and Sanger and co-workers introduced methods for rapid DNA sequencing. However, with the rapid increase in gene sequencing rate in the early 80-ties, more and more new protein sequences were derived from translation of anonymous pieces of DNA (or mRNA), first as a collateral benefit of sequencing the gene of interest and later as the result of first genome projects. This quantitative growth of sequence information was accompanied by a qualitative change that brought about several major problems. Although these problems could be considered just the issues of database quality control, they, in fact, touch on fundamental scientific questions.  

The first problem is just getting the correct protein set, i.e. correctly predicting the protein-coding regions in sequenced DNA fragments, for which there is no experimental evidence. Gene prediction historically had been one of the most important and difficult points of computational biology (see ♦4.1), and getting the correct set of, say, human proteins still remains a daunting task (see ♦5.3). The other related and equally challenging problem is separating the wheat from the chaff, i.e. deduced protein sequences that are most likely to be correct from frameshifted fragments, sequences of pseudogenes, enzymes with undocumented activities, and other suspicious entries and then properly annotating them. This is an area in which the authors of this book have amassed considerable (and often painful) experience and we try to share it with the reader in this and the next chapter. Finally, a paramount higher-level problem is to introduce some sort of database hierarchy, i.e. to classify the proteins into families and superfamilies according to their evolutionary relationships and to organize information in the database in accordance with this classification. From the database angle, all these issues are aspects of database curation, i.e. adding information to the entries through expert analysis. Different protein databases, including those most relevant to genomics, have adopted substantially different approaches to addressing those problems. Usually, there is a certain trade-off between coverage and curation in a database: small, specialized databases typically deal with just a narrow family of closely related proteins and are likely to be thoroughly curated . A good list of such databases is available at the ExPASy web site at http://www.expasy.org/alinks.html. Other databases strive to cover as much protein diversity as possible but offer only basic curation, if any. In this paragraph, we briefly discuss the general-purpose databases. The more specialized ones are addressed further in this chapter. 

Entrez Proteins

Currently, the principal source of protein sequence data are translations of nucleotide sequences deposited in the GenBank\EMBL\DDBJ database. All three international databases provide these translations, but their protein sets differ both in form and content. The NCBI protein database (Entrez Proteins, http://www.ncbi.nlm.nih.gov/entrez) offers the simplest and most complete set of deduced proteins. Each protein sequence is assigned a unique gene identification (gi) number; if the sequence is changed (e.g. expanded or merged with another sequence), the new sequence is assigned a new number. Obviously, this makes the database excessively large and redundant. Moreover, its size and redundancy is further increased by incorporating into Entrez Proteins protein sequences from PIR and SWISS-PROT (see below).  While this redundancy ensures completeness of the database, for most practical purposes (such as database searches) NCBI maintains a non-redundant (NR) protein database, in which identical sequences from the same source organism and all their fragments are merged into a single entry. Of course, if there is natural sequence variation (or, sometimes, sequencing variation), a non-redundant database will include all the different variants. The completeness of Entrez Proteins makes it the ultimate resource for almost any protein sequence.  Once the desired protein sequence is found, it is always useful to follow the link to "Related Sequences", which might show the same sequence from other databases, such as SWISS-PROT or PIR. Almost every Entrez Proteins entry is hyperlinked with the corresponding nucleotide sequence in GenBank (these links are absent in the records derived from PIR and SWISS-PROT; to find the corresponding nucleotide sequence, one has first to go to "Related Sequences" and look for the closest Entrez Proteins entry that has a nucleotide link). Each Entrez Proteins entry has a link to the NCBI Taxonomy database (see ♦3.7), which allows one to examine the taxonomic position of the source organism. Many Entrez Proteins entries have links to PubMed (see ♦3.8); if the three-dimensional sructure of the protein is known, there is a link to MMDB, the database of protein structures (see ♦3.4). For proteins associated with human diseases, a special database, OMIM (see ♦3.5), provides plenty of references and even some clinical information. 

BLINK???
There are several important things one needs to know to make sequence retrieval from Entrez Proteins effective. First, each entry is assigned a unique gene index (gi) identifier, which never changes. If the same sequence is imported from a different source (SWISS-PROT, PIR, genome sequence translation), each time it receives a new gi.  When the nucleotide sequence is updated, the protein sequence would also get a new gi.  This makes gi the most stable identifier for a given version of a given sequence. Second, SWISS-PROT and PIR entries, imported into Entrez Proteins, are reformatted and may not be identical to the entries in those databases.  Third, a search in Entrez Proteins can be best performed by specifying the search fields, such as author name [AUTH], EC number [ECNO], gene name  [GENE], and organism [ORGN] and connecting them with Boolean operators AND, OR, and NOT (see ♦3.8).  Two convenient search options allow one to specify the sequence length [SLEN] of the desired protein and its molecular weight [MOLWT] in Daltons (both lower and upper limits must be entered here as 6-digit numbers with leading zeros, e.g., 018500:018800[MOLWT]). 

A critical aspect of the general-purpose databases, such as GenBank\EMBL\DDBJ, is that they are archival databases, which only serve as repositories of the submitted data. Curation in these databases is limited to the verification that each entry has the correct syntax and conforms to certain basic requirements, such as being free from vector contamination and actually encoding the predicted protein sequence. The responsibility for the correctness of the sequence and its annotation rests with the submitter and, accordingly, any updates or corrections must come through the submitter (third party annotation is not permitted). These ground rules are essential for preserving the integrity of the record, but they also have substantial effect on the reliability and utility of the data, which is important for all users to keep in mind (see discussion further in this chapter). 

SWISS-PROT

In contrast to the Entrez Proteins, which is comprised of submitter-supplied translations of sequenced genes, the other two most commonly used protein databases, SWISS-PROT and PIR, are created and curated by human experts. SWISS-PROT (http://us.expasy.org/sprothttp://www.expasy.org/sprot

, mirrored at several places including ) was started by Amos Bairoch at the University of Geneva (hence the 'Swiss' in SWISS-PROT) and is now maintained by the Bairoch group in Geneva in collaboration with the EBI.  SWISS-PROT strives to perform careful sequence analysis of each database entry [Bairoch, 2000 #377]. New sequences are included into the database only after curation by specially trained biologists. In cases of discrepancies between several database entries for the same protein, a combined sequence is included in the database, and the variants are listed in the annotation.  SWISS-PROT annotations include descriptions of the function of a protein, its domain structure, post-translational modifications, variants, reactions catalyzed by this protein, and similarities to other sequences. 

The enzyme entries are cross-referenced with the ENZYME database (http://www.expasy.org/enzyme, see ♦3.6.3), the official database of the Enzyme Nomenclature Commission. As indicated above, the downside of such thorough curation is a relatively poor coverage of the protein diversity: the latest (June 6, 2002) release of SWISS-PROT contained only 110,419 entries. Wherever possible, SWISS-PROT entries are hyperlinked to various external databases, including literature citations from PubMed (see ♦3.8), nucleotide sequences from EMBL, GenBank, and DDBJ, protein motif and domain information from InterPro, Pfam, PROSITE, ProDom, and BLOCKS (see ♦3.3), and three-dimensional structures from Protein Data Bank (see ♦3.4). In addition to the accession number (e.g., P24182), each SWISS-PROT entry is assigned a 10-letter name, which consists of a four-letter gene or protein name and a five-letter species abbreviation, connected with an underline sign (e.g., ACCC_ECOLI).  These names are very convenient and are routinely used as protein identifiers in scientific literature and in this book, although, unlike accession numbers, they may change once new information becomes available.  When no SWISS-PROT name is assigned to a protein, we use the Entrez Proteins gi numbers.  Others, especially European researchers, routinely use identifiers from TrEMBL, a supplement to SWISS-PROT. 

TrEMBL

To accommodate the growing influx of protein sequences without compromising the quality of SWISS-PROT, the protein translations of the EMBL nucleotide sequences that have not been properly curated by human annotators are put into a supplemental database, referred to as TrEMBL (Translated EMBL, http://www.expasy.org/sprot). This database serves as a kind of purgatory (or rather a halfway house) for SWISS-PROT [Apweiler, 2000 #382]. Each TrEMBL entry is assigned a SWISS-PROT-type accession number that would remain with it when the sequence is finally manually checked and accepted into SWISS-PROT.  To simplify curation, TrEMBL entries are even formatted in the SWISS-PROT style.  However, one should be alert to the fact that TrEMBL entries are generated automatically, so their quality is not guaranteed and their annotations should not be considered as solid as those of authentic SWISS-PROT entries.  In contrast to Entrez Proteins, which is updated daily, TrEMBL is produced in quarterly releases and may miss some of the latest data. On the other hand, TrEMBL is much less redundant than Entrez Proteins, although it may contain more than one entry for the same sequence, too. The TrEMBL release of May 31, 2002, contains 622,751 entries.

PIR

The PIR (Protein Information Resource) database is an outgrowth of the National Biomedical Research Foundation's (NBRF) Protein Sequence Database, originally created by Margaret Dayhoff [Dayhoff, 1965 #380] and is currently maintained by NBRF (http://pir.georgetown.edu) with support from Munich Information Center for Protein Sequences (MIPS) in Munich, Germany (http://mips.gsf.de/proj/protseqdb/) and the Japanese International Protein Information Database [Barker, 2001 #411].  While technically also a curated database, PIR is far less rigorous than SWISS-PROT in maintaining the quality of its annotations (our personal favorite is the annotation of the Deinococcus radiodurans protein DRA0097 as "probable head morphogenesis protein", see below).  The advantage of PIR, however, is in its hierarchical organization. The June 03, 2002, release of PIR contained 283,236 entries that were classified into ca. 100,000 protein families and 30,000 superfamilies.  Unfortunately, as one can see from these numbers, the definitions of protein family and superfamily, used in PIR, are far more narrow than those used in most other protein databases, particularly motif-based and structure-based ones (see ♦3.3 and ♦3.4).  Thus, PIR superfamilies are often composed of very similar proteins, which may be treated by other databases as members of the same protein family.  As a result, more distant relations between proteins (the least trivial and, therefore, the most interesting ones, see ♦4.2.2) are often not represented in PIR at all. 

Recently, PIR has intensified its protein classification efforts with the creation of http://pir.georgetown.edu/iproclassiProClass (), a protein classifi-cation database, which might eventually become a useful resource [Wu, 2001 #412].  

PRF


A small number of entries in the protein databases (less than 3,000 Entrez Proteins entries) comes from the Japanese Protein Research Foundation (http://www.prf.or.jp/en).

3.1.3.  Reliability of the database entries

A critical question that emerges with any use of a database is the reliability of the information. The problem stands differently with archival and expert-curated sequence databases. Both types of databases reflect the fundamental limitation of today’s genomics: only a small minority of genes in any sequenced genome or in the entire database have been characterized in direct experiments, whereas the great majority are annotated by transfer of information from the few characterized sequences on the basis of sequence similarity. With expert-curated databases, there is a good reason to believe that, on most occasions, this information transfer is done responsibly and conservatively. However, one has to keep in mind that, because of the large number of sequences involved, the potential of sequence and structural analysis is rarely being exploited to the fullest. The archival databases, which, because of their completeness, are searched and used for sequence retrieval most often, present an additional layer of problems caused by almost inevitable inconsistency of the approaches used by thousands of submitters for gene identification and protein annotation. Because only the submitting author can change the entry, erroneous and/or confusing annotations can linger in the databases for years. Therefore, it would be prudent to exercise certain caution before drawing any far-reaching conclusions from the sequence annotation alone, particularly when that assignment is not supported by published research. To better recognize questionable database entries, it is important to understand the different ways, by which such entries can arise. The following cases illustrate some of the more common sources of unreliable and even patently wrong annotations in sequence databases (see also ♦3.3.4). 

3.1.3.1. Non-critical transfer of annotation 

The reality of biological research today is that only in few cases protein sequences deposited in the databases have proven biological activity, verified by expressing the respective protein in a heterologous host.  Most of the time, functions of the proteins encoded in the sequenced DNA fragments are deduced on the basis of their similarity to previously studied proteins.  Hence there is a great potential for propagation of errors. 

Curated databases are generally much more reliable and generally can be considered trustworthy. However, one should always keep in mind that all databases are compiled by humans, and none of them are perfect.  SWISS-PROT entries can usually be trusted, but even they can be misleading (see below).  GenBank and PIR entries, particularly those coming from complete genome sequencing projects, are especially prone to mistakes. In some cases the result can be quite amazing. Consider, for example, the Entrez Proteins annotation of the protein DRA0097 from D. radiodurans (AAF12241, gi|6460535) as "head morphogenesis protein, putative". PIR curators just changed that annotation into "probable head morphogenesis protein" (PIR entry C75604).  Ordinarily, as a bacterium, D. radiodurans would not be expected to form a head, so where in the world could this annotation come from?  It turns out that DRA0097 is closely related to the product of gene 7 of the B. subtilis bacteriophage SPP1, which is indeed required for the formation of the bacteriophage head.  Mindless transfer of the annotation of the best database hit, coupled with the truncation of the first word, produced a result that could be considered funny, if it was not virtually irreversible. The next example shows that because of the constant data flow between GenBank and related databases, it is almost impossible to completely remove a wrong entry. 

3.1.3.2.  Sequence annotations from unpublished research

Let us look at yet another D. radiodurans protein, DR2227, annotated as phosphonopyruvate decarboxylase.  Its closest relatives, also annotated as phosphonopyruvate decarboxylases, come from the complete genomes of Archaeoglobus fulgidus, Aquifex aeolicus, Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Thermotoga maritima, etc., meaning that they all have been annotated based on sequence similarity. Therefore, their annotations should not be considered seriously; all of them may be correct but all of them could be wrong.  The only non-genome project protein, related to DR2227, is a protein from Streptomyces hygroscopicus, currently annotated as OrfZZ in Entrez Proteins (BAA93685, gi|7416071) and as BCPC_STRHY (Q54271) in SWISS-PROT. The story here is a useful illustration of the inherent conflict between the logic of scientific investigation and the tendency of the databases to provide a snapshot of the available data.  In 1994, Seto and colleagues at the University of Tokyo investigated a cluster of genes responsible for the biosynthesis of bialaphos, an antibiotic produced by Streptomyces hygroscopicus, and sequenced a piece of DNA (GenBank accession number D37809.1, gi|520856) that appeared to participate in this process. The authors provisionally annotated one of the sequenced genes (gi|520857) as probable phosphonopyruvate decarboxylase, promptly noting that there was no experimental evidence for that annotation.  In the next several years, this same group demonstrated that phosphonopyruvate decarboxylase was a thiamin pyrophosphate-dependent enzyme, sequenced it, and in 1999 replaced the original entry with a newer, corrected version (GenBank accession number D37809.2, gi|5545270).  To underline that the original sequence was not a phosphonopyruvate decarboxylase and that its function was unknown, that sequence was renamed into OrfZZ (BAA93685). 

However, in the course of those five years, the original annotation of OrfZZ as phosphonopyruvate decarboxylase, although never experimentally substantiated, made its way into several databases, including PIR and SWISS-PROT and was used to annotate the homologs of OrfZZ encoded in the complete genomes of A. fulgidus, A. aeolicus, M. jannaschii,  M. thermoautotrophicum, T. maritima, etc.  Even though the original incorrect annotation has been purged from the database, the ghosts it spawned still remain there and confuse scores of new annotators.  As a result, several new proteins submitted to GenBank long after purging of the mis-annotated "phosphonopyruvate decarboxylase" were still annotated the same way, based on their similarity to mis-annotated proteins from A. fulgidus, A. aeolicus, M. jannaschii,  M. thermoautotrophicum, and T. maritima. As a matter of fact, a detailed analysis of OrfZZ and related proteins shows that they belong to the alkaline sulfatase superfamily of enzymes and probably function as phosphomutases, e.g. as phosphoglycerate mutases (see ♦4.2).

In the latter case, correcting the wrong annotation has been relatively straightforward, as there had been no experimental evidence whatsoever that the sequenced protein (OrfZZ) actually possessed the phosphonopyruvate decarboxylase activity.  Such cases are caused by the strict requirement that no manuscript is accepted for publication unless the new sequences described in that manuscript are submitted to GenBank.  When a manuscript describing a new sequence without sufficient experimental verification gets (justifiably) rejected at the stage of peer review, the sequence with its preliminary annotation would still linger in the database.  Eventually, newly sequenced homologs of this sequence get annotated as "protein related to" whatever was in that preliminary annotation.  As the example above shows, such cases can become quite pervasive.  

While the benefits of data exchange between the databases are obvious, it makes mistakes difficult to weed out.  For example, even though the originally incorrect assignment of the protein P28176 (gi|401236) as thymidylate synthase was corrected in SWISS-PROT and the symbol TYSY_MYCTU was re-assigned to the (correct) SWISS-PROT entry O33306 (gi|2624286), it remained in Entrez Proteins until June 25th, 2001.  In a similar case, although annotation of the Mycobacterium tuberculosis protein Rv3018c (SWISS-PROT entry P31500, gi|399410) as dihydrofolate reductase has been recognized as erroneous in the M. tuberculosis genome annotation (gi|2791615) and this ORF has been included in TrEMBL under the new identifier O53265, this wrong annotation is still alive and well in both SWISS-PROT and in PIR (see Table 3.2). 

The simple lesson from these cases is that one can trust an annotation of a protein in the database only when this protein (or its close homolog) has been experimentally characterized and there is a trustworthy publication that supports its functional assignment. 

3.1.3.3.  Sequences with mis-interpreted function

Unfortunately, there is a significant number of cases when erroneous database entries seem to be supported by at least some experimental data. The most common scenario for such entries is apparently as follows.  When a researcher clones a new gene, he/she usually looks for an open reading frame (ORF) that would complement an existing (known) mutation or produce an increase in the desired enzymatic activity.  These effects, of course, can be caused by suppression of the mutation, provision of a missing cofactor, or a transcriptional regulator, as well as a number of other mechanisms.  For example, an ORF that complemented the hemG mutation in Escherichia coli  (HEMG_ECOLI, P27863) was initially correctly referred to as a "gene involved in the protoporphyrinogen oxidase activity" [Sasarman, 1993 #240], but was later assumed to code for protoporphyrinogen oxidase itself [Nishimura, 1995 #247], even though it represented a small protein of flavodoxin type, usually comprising only one of several subunits of the dehydrogenase complex (Table 3.2).  The apparent presence of confirming experimental paper ("Cloning and identification of the hemG gene encoding protoporphyrinogen oxidase of Escherichia coli K-12", [Nishimura, 1995 #247]) makes such cases very difficult to recognize.  The simplest way to identify them that we could think of is based on the observation that such cases usually result in the database having two or more completely unrelated sequences, assumed to perform the same function.  While this phenomenon of non-orthologous gene displacement by analogous enzymes is quite common in nature, particularly among prokaryotes (see ♦2.1.5), each such case should be viewed with certain suspicion.  The following Table 3.2 lists several cases where the available experimental evidence does not seem sufficiently convincing to justify the current annotation of the protein.  It seems likely that the functions of most of these proteins have been misidentified. 

3.1.3.4.  Biologically meaningless annotation

Yet another group of misleading database entries includes cases where annotation of a protein, while technically correct, does not contain any useful biological information and should not be used for assigning functions to its homologs.  Thus, M. jannaschii protein MJ1618, annotated as polyketide synthase CurC, is indeed homologous to one of the ORFs in an operon that encodes a polyketide synthase that is responsible for the biosynthesis of an antibiotic, curamycin, in Streptomyces curacoi [Bergh, 1992 #262]. However, such an annotation is clearly flawed, as M. jannaschii evidently does not produce this antibiotic.  On the other hand, a detailed analysis of MJ1618 shows that it has statistically significant sequence  

Table 3.1.  Examples of questionable functional assignments in curated protein databases

	Questionable protein
	Enzyme with proven activity, but an unrelated sequence
	Comment
	Ref.

	SWISS-PROT  entry, name
	PIR entry
	Assigned enzyme activity
	Closest characterized homolog
	
	
	

	P27863 HEMG_ECOLI
	JC2513
	Protoporphyrinogen oxidase
	FLAV_CLOAB
	HEMG_BACSU 
	A flavodoxin component 
	[Sasarman, 1993 #240;  Nishimura, 1995 #247]

	P09127

HEMX_ECOLI
	S02185
	Uroporphyrin-III 

C-methyltransferase 
	-
	CYSG_ECOLI
	No similarity to methyltransferases
	[Sasarman, 1988 #248]

	P48012

YLEU_DEBOC
	S55845
	Isopropylmalate dehydrogenase 
	BUD3_YEAST
	LEU3_ECOLI
	Corrected in SWISS-PROT, still wrong in PIR
	[Iserentant, 1995 #239]

	P31500

DYR_MYCTU
	S21834
	Dihydrofolate reductase
	-
	DYRA_ECOLI
	Uncharacterized PCR product 
	-

	P27242

RFAK_ECOLI
	C42981
	N-acetylglucosamine transferase
	AAC45593
	RFAK_SALTY
	Mis-annotated based on operon alignment
	[Klena, 1992 #246]

	P54578

TGT_HUMAN
	S68430
	Queuine tRNA- ribosyltransferase 
	UBPF_YEAST
	TGT_ECOLI
	Most likely a ubiquitine 

C-terminal hydrolase 
	[Deshpande, 1996 #245]

	P46417

LGUL_SOYBN
	S47177
	Lactoylglutathione lyase 
	GTXA_TOBAC
	LGUL_HUMAN
	Most likely a glutathione

S-transferase
	-

	P21204

PHEB_BACSU
	D32804
	Chorismate mutase 
	-
	CHMU_BACSU
	Discussed by authors, 

PIR has a warning note
	[Trach, 1989 #242]

	P13337

VG29_BPT4
	-
	Folylpolyglutamate synthase 
	-
	FOLC_ECOLI
	Correctly annotated in PIR 
	[Ishimoto, 1988 #243]


similarity to several enzymes of the cupin superfamily [Dunwell, 2000 #413], including phosphomannose isomerases, and with reasonable confidence can be annotated as probable phosphohexomutase.  Even annotating MJ1618 simply as a member of the cupin superfamily would make more sense than a "polyketide synthase" assignment.  

The cases of "lost meaning" are especially common when the function of the experimentally characterized protein, used for annotation of the whole family of related proteins, is less than straightforward and requires several words to explain, which does not fit into the preconfigured annotation fields. In 1993, for example, Yarmolinsky and colleagues characterized two genes involved in maintenance of bacteriophage P1 in the cell in the prophage form and gave them nice tongue-in-cheek names.  The gene encoding the killer protein, responsible for cell death when the prophage is lost, was named "death on curing" (doc), whereas the gene encoding its antagonist was named "prevent host death" (phd) [Lehnherr, 1993 #261].  Those jokes did not go unnoticed, and homologs of these proteins in other organisms are now annotated either as Doc and Phd proteins (which is not very helpful for those unfamiliar with the original paper), or just as "analogues" (gi|1359617, gi|1359618, gi|1359619-gi|1359620), which is even less helpful.

Although the problem of misleading database entries is quite serious, one cannot help enjoying these and other database entries, which largely defy the common notion that sequence annotation is performed by highly educated and specially-trained biologists. Here are several stimulating entries from the current version of Entrez Proteins:

gi|8953396|CAB96669 - Separation anxiety protein-like [Arabidopsis thaliana] 

gi|1935023|CAA73071 - Automembrane protein H [Yersinia enterocolitica] 

gi|2584763|CAA74752 - brute force protein [Helicobacter pylori]

gi|2144179|JC4991 - Detergent sensitivity rescuer [C. glutamicum]

gi|12516455|AAG57276 Putative 1,2-dioxygenase [E. coli]

gi|1590909 - Centromere/microtubule-binding protein [M. jannaschii] 

gi|1788039 - Periplasmic protein related to spheroblast formation [E. coli] 

gi|2650057 - DR-beta chain MHC class II [Archaeoglobus fulgidus] 

gi|1334443 - Inside intron 7 [Saccharomyces cerevisiae]
gi|1968785 - cDNA 5' end similar to similar to arrest-defective protein 1 isolog [Homo sapiens] . 

Finally, E. coli protein with gi|537235 has the following remarkable annotation: “Kenn Rudd identifies as gpmB [Escherichia coli]”. Although this protein is only distantly related to the E. coli phosphoglycerate mutase GpmA and, according to the latest results, comprises a broad specificity phosphatase ([Rigden, 2001 #414], see ♦8.1), this is probably still a better way to introduce tentative annotations than any of the examples above.  If readers of this book come across other exciting examples of creative protein annotation, the authors would greatly appreciate hearing from them.

3.2.   Protein Sequence Motifs and Domain Databases

The terms "protein sequence motif" and "protein domain" are widely used in biological literature for describing something less than the total protein sequence, but the exact meaning of these terms is somewhat fuzzy. We would broadly define a protein sequence motif as a set of conserved amino acid residues that are important for protein function and located within a certain (short) distance from one another.  These motifs can often provide clues to the functions of otherwise uncharacterized proteins.  A structural counterpart of a sequence motif (or, rather, several motifs) in a folded protein is a domain.  We define a protein domain as a separately evolving, structurally compact unit that folds independently of the other parts of the protein, forming a stable conserved three-dimensional structure. Some proteins comprise a single protein domain, while others consist of several domains or include additional sequences, e.g. signal peptides in membrane and secreted proteins, or prepro-fragments in many protease precursors.  Some protein domains are "promiscuous" and can be found in association with domains that otherwise have nothing in common.  This is why, in sequence analysis of new proteins, it is often prudent to deal with one domain at a time. To simplify annotation of multi-domain proteins, several popular databases contain extensive listings of all known protein domains.  

3.2.1.  Motif databases

PROSITE: from patterns to profiles 

 The oldest and the most famous sequence motif database is PROSITE (http://www.expasy.org/prosite, mirrored in the US at http://us.expasy.org/prosite), maintained by Amos Bairoch and tightly interlinked with SWISS-PROT [Falquet, 2002 #1159].  For many years, PROSITE has been maintaining a collection of sequence motifs, which are represented and stored as UNIX regular expressions.  For example, the famous P-loop motif, first described in 1982 by John Walker and colleagues as "Motif A" and found later in many ATP- and GTP-binding proteins, corresponds to a flexible loop, sandwiched between a -strand and an -helix and interacting with - and -phosphates of ATP or GTP [Walker, 1982 #233]. This motif is represented in PROSITE as 

[AG]-x(4)-G-K-[ST]  (PROSITE entry PS00017), 

which means that the first position of the motif can be occupied by either Ala or Gly, the second, third, fourth, and fifth positions can be occupied by any amino acid residue, the sixth and seventh positions have to be Gly and Lys, respectively, followed by either Ser or Thr. 

This approach to describing sequence motifs has both its advantages and disadvantages. On the plus side, a comparison of a given sequence against all the patterns in the database can be performed very fast even with very limited computational resources. Virtually any user could download the whole database (less than 5 Mb) and use it on the home computer. On the other hand, regular expressions cannot fully account for the whole sequence diversity and necessarily exclude certain deviant, but closely related, sequences.  An attempt to relax the motifs to accommodate this sequence diversity would make some motifs quite fuzzy.  As a result, possible sites for N-glycosylation of an Asn residue

N-{P}-[ST]-{P}  
(PS00001), 

where {P} means any amino acid but proline, or phosphorylation of protein Ser and Thr residues

[RK](2)-x-[ST]

(PS00004),

[ST]-x-[RK] 

(PS00005), and

[ST]-x(2)-[DE] 

(PS00006)

can be found in almost every protein. To improve description of such motifs, PROSITE authors have started supplementing patterns with rules and profiles (matrices). 

A rule is basically a textual description of a complex pattern that allows to indicate not just what amino acid residues are permitted in a particular position, but also which of these residues are the most frequent (i.e. best conserved). For example, PROSITE pattern PS00008 for the N-terminal myristoylation site 

G-{EDRKHPFYW}-x(2)-[STAGCN]-{P} 

is supplemented by the following rule:

     - The N-terminal residue must be glycine.

     - In position 2, uncharged residues are allowed. Charged residues, proline and large hydrophobic residues are not allowed. 

     - In positions 3 and 4, most, if not all, residues are allowed. 

     - In position 5, small uncharged residues are allowed (Ala, Ser, Thr, Cys, Asn and Gly); serine is favored. 

     - In position 6, proline is not allowed.

Here, "serine is favored" clearly indicates that not all small uncharged residues are equal in position 5, but how strongly is it favored? To answer this question one has to go to a more complex system of notation, such as a profile (matrix). For example, ankyrin repeats (PROSITE pattern PS50088), which are responsible for the interaction of p53 with p53-binding protein [Gorina, 1996 #249], of NFkB with its inhibitor IkB [Jacobs, 1998 #250] and for many other important protein-protein interactions, are too diverse to be described by even a complex pattern or set of rules. Instead, it is easier to just align all known ankyrin repeats and calculate the frequency of each amino acid residue at each position of the alignment. This operation would produce a matrix which would have 20 frequency numbers for the first position, 20 numbers for the second one, and so on. If the alignment contains gaps, the frequency of a gap in any given position would give us the 21st number.  Also, because some sequences come from acid hydrolysis, which converts Asn into Asp and Gln into Glu, there traditionally are two more letters, B (either Asn or Asp) and Z (either Gln or Glu). In addition, X would stand for an unknown amino acid residue.  As a result, one would end up with a matrix of the size 24xL, where L is the length of the motif. Actually, for the purposes of sequence comparison, rather than frequencies, it is more convenient to use their logarithms. PROSITE, like other tools (see ♦3.2), uses log-odds position-specific scoring matrices (PSSMs) that look like the following one: 

   A  B  C   D  E  F  G  H  I  K  L  M   N  P  Q   R  S  T  V  W  Y   Z

B -10   9  -23   9   5 -18 -12   2 -20  -1  -17 -12   9  -15   2   -2  -1  -4 -19  -26 -8    2 

G  -3  -4  -28  -4 -11 -26  40 -13 -33 -11  -25 -17   2  -18 -12  -12  -1 -15 -26  -22 -23 -11 

R  -9  -3  -22  -5  -2 -11 -16  -3 -15  -1  -12  -7   0  -18  -1    3  -6  -7 -14  -16 -4   -2 

T   0   0  -13  -7  -8 -11 -16 -14 -11  -9  -13 -11   3  -11  -8   -9  17  32  -4  -30 -10  -8 

P   8 -17  -23 -16  -7 -21 -15 -20 -11 -12  -16 -12 -16   35 -11  -19  -4  -5 -13  -27 -22  -  

L  -9 -29  -20 -31 -22  11 -30 -21  21 -28   41  19 -28  -28 -20  -20 -26  -9  13  -19  1  -21 

H -15  -5  -25  -6  -5 -12 -20  55 -17 -11  -11   3   1  -20   3   -5 -10 -14 -18  -24  13  -4 

L  -8 -19  -20 -21 -14   1 -25 -12   5 -15    9   5 -18  -23 -12  -13 -15  -7   3   -8   5 -14 

A  39 -11   -7 -20 -12 -16  -4 -19  -9 -12   -9  -9 -10  -13 -11  -19   8   0   0  -20 -16 -12 

A  16 -17    1 -24 -18 -11 -17 -22   3 -17   -2  -1 -15  -20 -16  -20   0   0  11  -27 -14 -18 

R  -5  -8  -20 -10  -2 -14 -16  -6 -12   1  -10  -3  -5  -17   1    3  -4  -5 -10  -20  -7  -2 

N  -5  -2  -20  -6  -2 -13 -12   0 -15  -1  -14  -7   3  -17  -1    0  -1  -3 -14  -21  -4  -2 

G  -3   1  -25  -1  -8 -26  29 -10 -31  -8  -26 -17   8  -17  -8   -8   1 -12 -25  -24  -22 -8 

H -12  10  -23   9   3 -19 -14  18 -22   0  -19 -11  13  -17   5    1  -1  -7 -22  -27  -3   2 

L  -6 -13  -21 -14  -8  -6 -22 -12   0 -11    1   0 -12  -13  -9  -10  -8  -3   1  -22  -5 -10 

E  -7   9  -25  13  16 -25 -12  -3 -23   3  -20 -15   5   -6   5   -2   1  -5 -21  -29  -16 10 

V  -4 -22   -9 -28 -22  -1 -27 -20  16 -20   11  11 -19  -23 -18  -19 -12  -3  17  -24  -6 -21 

V   3 -24  -11 -28 -23  -1 -24 -24  17 -20   12   8 -22  -24 -21  -20 -10  -2  23  -24  -7 -22 

K  -9   1  -25   2  11 -24 -17  -2 -22  15  -19 -10   2  -13  10   14  -4  -7 -18  -25 -11   9 

L  -7 -18  -20 -21 -13   4 -24 -12   4 -14   10   5 -16  -22 -12  -11 -13  -5   2  -13   5 -13 

L -10 -29  -19 -31 -21  12 -30 -20  20 -28   42  19 -28  -29 -20  -20 -27 -10  11  -18   1 -21 

L  -8 -26  -18 -29 -21   3 -30 -20  22 -24   28  15 -24  -26 -18  -19 -21  -8  15  -21  -2 -21 

E  -5   7  -24   8  14 -25 -11  -2 -23   6  -20 -13   5  -11   9    4   3  -4 -20  -27 -14  11 

H  -3  -3  -20  -8  -4 -12 -14   4 -15   1  -13  -7   2  -18  -1    3  -3  -6 -14  -21  -3  -3 

G  -2  -3  -27  -4 -13 -27  44 -14 -34 -13  -27 -18   4  -18 -13  -13   1 -14 -26  -23 -24  13 

A  26 -11  -11 -18 -11 -16  -5 -18  -7 -12   -9  -8 -10  -11 -12  -18   5  -1   1  -23 -16 -12 

D -11  26  -24  30  10 -28  -8  -1 -27   0  -26 -21  20  -11   1   -4   5  -4 -24  -35 -17   5 

T  -4 -24  -21 -26 -19  -4 -27 -23  16 -18    8   6 -21   -8 -18  -18 -13  -4  15  -23  -8 -20 

N  -9  22  -21  17   4 -20  -8   2 -21  -2  -22 -16  26  -15  -1   -4   5  -1 -22  -33 -15   1 

A   4 -12  -17 -16 -10 -10 -18 -14   1 -11   -1   0 -11  -17  -8  -12  -4  -2   3  -23  -8 -10 

R  -6  -9  -20 -10  -3 -16 -18 -10 -11   3  -11  -5  -7  -13   0    6  -5  -4  -7  -23 -10  -3 

Figure 3.1.  Position-specific scoring matrix for ankyrin repeats. The first column represents the consensus sequence of the ankyrin repeat.  From PROSITE entry PS50088 (http://us.expasy.org/cgi-bin/nicesite.pl?PS50088), ANK_REPEAT (see also the documentation in PDOC50088).

Clearly, while the above form of presentation might be perfect for a computer, it is challenging for a human to comprehend.  We would be more comfortable with something that might be less precise but would capture the most important features of a motif. There are several ways to achieve this. Probably the most convenient one is a sequence logo [Schneider, 1990 #255], in which the height of each letter indicates the degree of its conservation, whereas the total height of each column represents the statistical importance of the given position (Fig. 3.2) 

Despite of all the shortcomings of sequence patterns, PROSITE remains a very convenient tool for quick sequence analysis of newly characterized proteins. The textual descriptions of the sequence motifs and protein families that are characterized by these motifs are of special value. They offer a unique perspective of the functional diversity of proteins that may be quite similar sequence-wise.  A reader of this book would definitely benefit from spending ample time looking through PROSITE documentation files (http://www.expasy.org/cgi-bin/prosite-list.pl).  Another useful exercise is to take some well-characterized protein sequences, most familiar to the reader, and search them for PROSITE patterns using the ScanProsite tool (http://www.expasy.org/tools/scnpsite.html). Finally, those who would feel a sudden urge to start developing their own sequence patterns would be well advised to take a look at the "optimal way to deduce motifs" picture at http://www.expasy.org/images/cartoon/prosite.gif.  This nice cartoon clearly explains why, with the exception of PROSITE, all other motif databases do not attempt to create representative patterns for the selected motifs and keep their data simply as sets of alignments or matrices.


Figure 3.2. Conserved motif of the ankyrin repeat. The picture was drawn using SeqLogo program [Schneider, 1990 #255] in the web-based implementation by Steven Brenner (http://www.bio.cam.ac.uk/seqlogo). Amino acid residues numbering is as in yeast protein AKR1 (P39010, AKR1_YEAST).

BLOCKS 

The BLOCKS database (http://www.blocks.fhcrc.org, mirrored at http://bioinformatics.weizmann.ac.il/blocks) was developed by Steven Henikoff and coworkers at the Fred Hutchinson Cancer Center in Seattle, WA, and is based on a completely different approach than PROSITE [Henikoff, 1999 #151].  Each “block” in this database is a short ungapped multiple alignment of a conserved region in a family of proteins. These blocks were originally derived from proteins with PROSITE entries, but were later expanded using data from many different sources. A part of the BLOCKS database entry for the ATP-grasp superfamily of proteins, which includes biotin carboxylase, carbamoyl phosphate synthetase, succinyl-CoA synthetase, D-alanine-D-alanine ligase, and several other enzymes ([Galperin, 1997 #108], see ♦4.5.2.2) is shown below. 

It is easy to imagine how such a sequence block can be used to create a PSSM.  Indeed, BLOCKS alignments were used in developing the BLOSUM series of substitution matrices (see ♦4.2.1). Recently, the database has been 
Block BP00180A

DE   LIGASE SYNTHETASE CARBAMOYL

ACCC_BACSU|P49787  ( 104) GPSADAISKMG  39

ACCC_METJA|Q58626  ( 104) GPNPDAIEAMG  52

CARB_BACSU|P25994  ( 276) GIEGGCNVQLA  57

CARY_BACSU|P18185  ( 954) GTFASWMEQEG  51

DUR1_YEAST|P32528  ( 735) GPSGDIIRGLG  17

PCCA_HUMAN|P05165  (  27) GSVGYDPNEKT 100

PUR2_ECOLI|P15640  (  93) GPTAGAAQLEG  37

PURK_PSEAE|P72158  (   9) GQLGRMLALAG  26

PURT_PASHA|P46927  ( 261) GIFGVELFVCG  46

PYR1_DROME|P05990  (  33) GVGGEVVFQTG  18

SUCC_METJA|Q57663  (  52) GKAGGILFASN  54

YFIQ_ECOLI|P76594  ( 125) NSLGLLAPWQG  59

ACCC_ECOLI|P24182  ( 104) GPKAETIRLMG  27

ACCC_HAEIN|P43873  ( 104) GPTADVIRLMG  23

ACCC_PSEAE|P37798  ( 104) GPTAEVIRLMG  23

CARB_ECOLI|P00968  ( 397) ALRGLEVGATG  28

CPSM_HUMAN|P31327  ( 429) GSGGLSIGQAG   8

CPSM_RAT|P07756    ( 429) GSGGLSIGQAG   8

PYR1_DICDI|P20054  ( 372) GSGGLSIGQAG   8

PYR1_HUMAN|P27708  ( 400) GSGGLSIGQAG   8

PYR1_YEAST|P07259  ( 445) GSGGLSIGQAG   8

COA1_HUMAN|Q13085  (  60) SDLGISALQDG  23

PUR2_DROME|P00967  ( 227) GDTGPNTGGMG   9

Figure 3.3. A part of the BLOCKS database entry BP00180 "Ligase synthetase carbamoyl" for the proteins of ATP-grasp superfamily (see ♦4.5). 

updated and now includes blocks derived from Pfam, ProDom, PRINTS, and Domo motif and/or domain databases (see below).

The BLOCKS server allows one to search given protein or nucleotide sequence against the blocks in the database; a nucleotide sequence will be translated in all six reading frames and each translation will be checked.  The BLOCKS database also has an important feature that allows the user to submit a set of sequences, create a new block, and search this block against the database. This option can be especially useful in cases where a usual database search finds several homologous proteins with no known function. 

Finally, a very attractive feature of BLOCKS is that each sequence block in the database can be used for creating sequence logos, similar to the one in Figure 3.2. This option allows one to visualize the degree of sequence conservation in each block, which helps to memorize the principal conserved residues of each enzyme family covered in the database.

PRINTS


The PRINTS database (http://www.bioinf.man.ac.uk/dbbrowser/PRINTS  [Attwood, 2000 #1310; Attwood, 2002 #1160]), also referred to as "PRINTS-S: the database formerly known as PRINTS" [Attwood, 2000 #1310] is, like BLOCKS, a collection of conserved sequence fragments in protein sequences.  In contrast to the BLOCKS database, PRINTS would list several conserved sequence blocks for each protein, which results in much smaller families than in BLOCKS.  One can compare a sequence or even a library of sequences against the whole database using BLAST (♦4.3.3), making it a useful tool for identifying distant relationships among proteins. PRINTS data are now incorporated into the EBI's InterPro database (http://www.ebi.ac.uk/interpro, see ♦3.2.3) and can be searched at the InterPro web site. 

3.2.2.  Domain databases

Pfam

The Pfam database [Bateman, 2000 #253] was jointly developed by three groups in UK, USA, and Sweden and is now available at the web sites of the Sanger Centre (http://www.sanger.ac.uk/Software/Pfam), Washington University in St. Louis (http://pfam.wustl.edu), and the Karolinska Institute in Stockholm (http://www.cgr.ki.se/Pfam), as well as on the web site of INRA in Jouy-en-Josas, France (http://pfam.jouy.inra.fr). Pfam contains protein sequence alignments that were constructed using hidden Markov models (HMMs, see ♦4.3.4).  In contrast to Entrez Proteins, SWISS-PROT and PIR, which include full-length protein sequences, Pfam is a protein domain database. This means that a typical Pfam entry is not a protein sequence as in  Entrez Proteins,  SWISS- 


Figure 3.4.  Pfam representation of the conserved domains in yeast pyruvate carboxylase PYC1_YEAST (P11154).

PROT and PIR, or a sequence pattern as in PROSITE, but an alignment of the most conserved portions ("domains") of many related proteins from SWISS-PROT and TrEMBL databases. Although a typical Pfam alignment consists of 20-30 sequences, the entries PF00516 (glycoprotein GP120) and PF00096 (C2H2-type zinc finger) include more than 10,000 sequences each. In total, more than 60% of the proteins in SWISS-PROT are included in one or more Pfam alignments . 

Besides complete alignments, Pfam provides "seed alignments". These include fewer proteins that are, nevertheless, sufficiently different to reflect the diversity of the members of each given Pfam family. In addition to multiple sequence alignments, each Pfam entry contains a hidden Markov model of the corresponding family, which combines a PSSM (see above) with a measure of the probability of the appearance of a given amino acid at a given position as a result of a mutation (see ♦4.3.4). The existence of precomputed hidden Markov models for each protein family in Pfam allows a relatively quick search of any given protein against the Pfam database. 

Because proteins often include more than one conserved domain, correctly identifying domains and their boundaries is a necessary prerequisite to a detailed sequence analysis. By storing complete alignments, rather than some selected amino acid patterns, Pfam preserves the sequence information in its entirety. This makes it a very powerful tool for searching for subtle sequence similarities that are difficult to pick up by a standard database search. As with PROSITE, simple browsing of Pfam description files is a quick and easy way to introduce oneself to the current state of protein sequence analysis. 

Another useful trait of Pfam database is that it now includes a supplement, referred to as Pfam-B, for entries that are only being considered for inclusion in Pfam. Pfam-B serves as a temporary storage for those entries which have not been manually curated yet, akin the one TrEMBL provides for SWISS-PROT. Browsing Pfam-B entries and deciding whether they really belong to the corresponding Pfam family can be a very useful training exercise, which might even result in unexpected findings. Pfam data have been incorporated into the InterPro (http://www.ebi.ac.uk/interpro) and CDD  (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) databases (see ♦3.2.3) and can be searched at their respective web sites. It is important to remember, however, that the search tool at InterPro (HMMer-based) is similar, but not identical to the one used at the Pfam web site, while CDD uses a completely different (RPS-BLAST-based) approach. As a result, one should not be surprized by the differences in the Pfam search outputs with the same query sequence at those three web sites.

SMART

Like Pfam, Simple Modular Architecture Research Tool (SMART, http://smart.embl-heidelberg.de), developed by Peer Bork's group at EMBL and Chris Ponting at the University of Oxford, consists of multiple domain alignments, built using hidden Markov models [Schultz, 1998 #182; Letunic, 2002 #1157]. Although a much smaller database than Pfam, SMART concentrates on those domains that are most common in bacterial and eukaryotic proteins. For example, a significant fraction of SMART domains are involved in transcriptional regulation and signal transduction, which makes them extremely important for sequence analysis of eukaryotic proteins.  

SMART also includes a nice graphical tool that, in addition to displaying all the SMART domains found in a given protein, also shows predicted signal peptides, transmembrane segments and regions of low complexity (see ♦3.3.1.3). The June 2002 release of SMART contained manually curated alignments of 639 domains. The power of extensive HMM searches, performed by the SMART team, becomes clear from the following example. The PROSITE profile for ankyrin repeats (see above) is said to correctly recognize all 134 occurrences of this repeat in the SWISS-PROT database.  In contrast, SMART reports as many as 4489 occurrences of this repeat in 1158 proteins in the non-redundant database, including 108 ankyrin repeats in C. elegans alone. Data from SMART have been incorporated into the EBI's InterPro database (http://www.ebi.ac.uk/interpro) and NCBI's CDD database (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, see ♦3.2.3) and can be searched at their web sites, which, however, cannot rival the superior graphics capabilities of the SMART web site (Fig. 3.8). 


Figure 3.5.  SMART representation of the domain organization of the predicted activator of nitrogen fixation NifL from Synechocystis sp. 

ProDom

In contrast to Pfam and SMART, which are manually curated, the ProDom database (http://www.toulouse.inra.fr/prodom.html), developed by Jérôme Gouzy, Florence Corpet, and Daniel Kahn in Toulouse, France, is created largely automatically, based on the results of PSI-BLAST searches of SWISS-PROT and TrEMBL databases [Corpet, 1999 #327; Corpet, 2000 #326].  As an automatic compilation of homologous domains, ProDom relies on fairly high threshold values for domain assignments.  As a result, homologous sequences may end up assigned to different domain families (see [Galperin, 2000 #322] for an example).  Nevertheless, thanks to its colorful images, ProDom offers an easy and convenient way to visualize domain organization of proteins.  Importantly, ProDom allows one to display all the proteins that share at least one domain with the given protein. This useful option is included in SWISS-PROT, which links its entries to ProDom.  ProDom is also extensively linked with Pfam and provides a nice graphical option for viewing Pfam alignments. ProDom data have been incorporated into the EBI's InterPro database (http://www.ebi.ac.uk/interpro, ♦3.3.3) and are available through its unified interface.


Figure 3.6.  ProDom representation of the conserved domains in yeast pyruvate carboxylase PYC1_YEAST (only the first 900 aa are shown, compare to Fig. 3.4).

COGs

Even though the Clusters of Orthologous Groups of proteins database, maintained at the NCBI (http://www.ncbi.nlm.nih.gov/COG, [Tatusov, 2000 #209]), is described in more detail later (♦3.5), we mention it here because a comparison of proteins belonging to phylogenetically distinct organisms provides a powerful way to identify sequence motifs that are common to those proteins.  This makes the COG database a convenient tool for motif search, particularly because the annotation of many conserved families (COGs) in the database are based on their conserved motifs.  Searching the given protein sequence against the proteins included into the COG database using COGnitor (http://www.ncbi.nlm.nih.gov/COG/xognitor.html) often allows one to identify conserved sequence motifs that would be very hard to recognize any other way.  
3.2.3.  Integrated motif and domain databases

The rapid growth of the domain-based databases such as Pfam, SMART, ProDom, and others made them a valuable resource for sequence similarity searches, conveniently supplementing EBI's SP-TrEMBL and the NCBI's nonredundant protein database.  In an effort to incorporate domain databases into their web sites, EBI and NCBI have created their own integrated domain databases, InterPro and Conserved Domain Database (CDD). 

InterPro

Integrated Resource of Protein Families, Domains and Sites (InterPro, http://www.ebi.ac.uk/interpro) is an EBI database unifying protein sequences from SWISS-PROT with the data on functional sites and domains from PROSITE, PRINTS, ProDom, Pfam, and SMART databases [Apweiler, 2001 #252].  InterPro entries are assigned their unique accession numbers and include functional descriptions and literature references. Each InterPro entry lists its matches in SWISS-PROT and TrEMBL. 


The family, domain and functional site definitions of InterPro are expected to greatly simplify the automated annotation of TrEMBL by increasing both its efficiency and reliability. 


Figure 3.7.  A  general look of the InterPro entry IPR000741 for class I fructose-1,6-bisphosphate aldolase.  Links to the PROSITE entry PS00158, Pfam entry PF00274, and ProDom entry PD001128 at the top of the page and to the PROSITE document PDOC00143 and to the Blocks entry IPB000741at the bottom of the page are underlined. 

CDD 

The NCBI's Conserved Domain Database and Search Service (CDD, http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) is a collection of multiple alignments of protein domains from Pfam and SMART databases, supplemented with alignments from LOAD (Library of Ancient Domains), created at NCBI by L. Aravind and co-workers. The alignments downloaded from Pfam and SMART are trimmed to leave only those positions that are represented in at least 50% of all aligned sequences, which determines the length of the consensus and the size of the corresponding position-specific scoring matrix (PSSM).  A compilation of these PSSMs can be used as a database for sequence similarity search (CD-Search, Fig. 3.8) using reverse position-specific BLAST (RPS-BLAST, see ♦4.3.4). 


Figure 3.8.  Results of the CD-search of the pppGpp synthetase RelA from Bacillus subtilis (O54408, RELA_BACSU).  The boxes indicate RPS-BLAST hits to the N-terminal metal-dependent phosphohydrolase HD superfamily [Aravind, 1998 #401] from SMART (top) and from LOAD (bottom), to the centrally located TGS domain [Wolf, 1999 #176] from Pfam, and to the C-terminal ACT domain [Aravind, 1999 #2] from Pfam (top) and from LOAD (bottom). Links to the corresponding domain alignments are underlined. 

3.3.  Protein Structure Databases

Three-dimensional (3D) protein structures are much harder to determine than primary sequences, but they are also much more informative.  Knowledge of atomic coordinates leads to elucidation of the active site architecture, packing of secondary structural elements, patterns of surface exposure of side-chains and relative positions of individual domains. Structural information is available only for a limited number of proteins, comprising ca. 600 distinct protein folds.  In completely sequenced genomes, roughly every seventh protein has a known structural counterpart. 

PDB

Protein Data Bank (PDB) is a public repository of 3D structures of proteins and nucleic acids. Until recently, PDB was located at Brookhaven National Laboratory; it is now maintained by Research Collaboratory for Structural Bioinformatics (RCSB), which unites groups at the San Diego Supercomputer Center (http://www.rcsb.org/pdb), Rutgers University (http://rutgers.rcsb.org/pdb/), and the National Institute of Standards and Technology (http://nist.rcsb.org/pdb/). PDB is mirrored around the world, including fully supported mirror sites in UK, Singapore, Japan, and Brazil.  

Just as every nucleotide sequence has to be deposited in GenBank prior to its publication, atomic coordinates of all the proteins and nucleic acids have to be deposited in PDB. However, processing of the submissions at PDB differs from that at GenBank in several important aspects. First, nucleotide (and protein) sequences submitted to GenBank are released to the public immediately after the publication of the paper that describes these seqences.  3D structures submitted to the PDB may remain “on hold” for up to year after the publication. This delay has been instituted to allow successful processing of patent applications spawned by determination of 3D structures of important drugs and drug targets.  This policy is under review, as many researchers argue for release upon publication, as it is being done in sequence databases.  In any case, the list of structures awaiting release is available at the PDB web site (http://www.rcsb.org/pdb/status.html). Those willing to test their skills in predicting the 3D structures can download protein sequences whose 3D structures have been determined and submitted to PDB but are still kept on hold. 

Just like GenBank automatically checks newly deposited nucleotide and protein sequences to ensure that the given sequence can indeed code for protein, that it has a correct taxonomic assignment and contains all the required fields, the PDB submission process (ADIT) includes a number of tests that automatically validate such parameters as bond distances, torsion angles, names of heteroatoms, etc. This validation procedure helps to ensure the quality of the newly submitted structures. Finally, unlike Entrez Proteins, PDB does not index structures by the degree of their similarity. This task is performed by databases like MMDB, FSSP, SCOP, or CATH, each of which relies on its own approach to comparing protein structures. 

MMDB

The Molecular Modeling Database (MMDB), maintained by the NCBI Structure group (http://www.ncbi.nlm.nih.gov/Structure), is tightly linked to Entrez Proteins and offers the same convenient links to similar protein sequences, Taxonomy and PubMed databases. In addition, for each given entry, it allows the user to see a list of its structural neighbors, calculated using the VAST algorithm, developed by Steven Bryant and colleagues at the NCBI [Madej, 1995 #266; Gibrat, 1996 #264]. VAST (Vector Alignment Search Tool) searches for topologically similar fragments (-helices, -strands) in proteins, which is very useful in comparing distantly related proteins that might have no detectable sequence similarity.  The output of VAST search can be ranked by percent of identity between the aligned sequences, the length of aligned region, the RMSD (root mean square distance) between superposed elements, or VAST scores and probability values. VAST allows the user several ways to view structural alignment of the selected proteins and generate structure-based sequence alignments, which can be especially useful for the identification and analysis of distantly related proteins (see ♦3.1).

FSSP

The Fold classification based on Structure-Structure alignment of Proteins database (FSSP, http://www.ebi.ac.uk/dali/fssp), created by Liisa Holm and Chris Sander at the EBI, is produced by all-against-all structural comparisons of proteins with known 3D structures using the DALI program [Holm, 1995 #364; Holm, 1996 #357]. DALI aligns protein structures based on the minimal RMSD of the carbon atoms in the main polypeptide chain (C atoms). For convenience, proteins with closely related structures are clustered together, and only structures representing different proteins are compared and listed in the database. FSSP allows one to search for structural neighbors of each representative structure or to see the list of all indexed structures, rendered in a hierarchical format. Like MMDB, FSSP is very convenient for generating structure-based sequence alignments of distantly related proteins.  However, because these two databases use radically different approaches to the structural comparisons of proteins, they can sometimes complement each other. In cases of low structural similarity, it may be useful to compare the lists of neighbors of the given structure generated by both algorithms and note the common hits and discrepancies between the two.

SCOP

In contrast to MMDB and FSSP that both use automated procedures to generate their lists of structural neighbors, the Structural Classification Of Proteins (SCOP) is a manually curated database of protein structures, developed at the MRC Laboratory of Molecular Biology in Cambridge, England [Murzin, 1995 #369; Lo Conte, 2000 #367]. SCOP (http://scop.mrc-lmb.cam.ac.uk/scop, mirrored at http://scop.berkeley.edu) is a fully hierarchical database that classifies all protein structures into families of related proteins, structural superfamilies, folds, and structural classes. All known structures are divided into eight classes, all alpha proteins, all beta proteins, alpha and beta proteins with beta-alpha-beta units (a/b), alpha and beta proteins (a+b) with segregated alpha and beta regions, multi-domain proteins (alpha and beta), membrane and cell surface proteins, small proteins, and coiled-coil proteins. Each class contains one or several folds, which are further divided into superfamilies. 

Manual curation of the protein structures in SCOP supplements automatic structural comparisons with case-by-case analysis that take into account results of sequence comparisons, conserved sequence motifs, etc. As a result, SCOP assignments are often used as an ultimate authority on the evolutionary relatedness of proteins. Typically, all proteins assigned by SCOP to the same fold show enough structural similarity to be considered evolutionarily related, that is descending from a common ancestral protein (see (3.1). However, certain folds, for example, TIM-barrel fold, include a variety of proteins with little sequence similarity whose common origin may seem obscure. Several superfamilies that belong to this fold have similar phosphate-binding sites, but some other superfamilies do not. Energy considerations suggest that this and several other common folds could have evolved several times independently. For such folds, only proteins that belong to the same superfamily can be confidently considered to be relatives and have similarities beyond the common structure (e.g. similar substrate-binding sites or similar catalytic mechanisms, see ♦4.3). 

To simplify assignment of new protein structures to its folds and superfamilies, SCOP now offers a possibility to compare a protein sequence against the database, which allows one to determine its nearest relative with known 3D structure. In cases of sufficient sequence similarity such comparison may yield important structural information.
CATH

The CATH database (http://www.biochem.ucl.ac.uk/bsm/cath_new), developed by Janet Thornton and colleagues at the University College, London [Orengo, 1997 #340; Pearl, 2000 #335], is also a hierarchical classification of protein domain structures. CATH clusters proteins at four major levels, Class (C), Architecture (A), Topology (T) and Homologous superfamily (H).  CATH classification also includes manual curation of each group, based on the secondary structure content (Class), orientation of secondary structures (Architecture), topological connections between them (Topology), and, finally, based on sequence and structure comparisons (homologous superfamily level). 


Figure 3.9. Structures of the class II (metal-dependent) fructose-1,6-bisphosphate aldolase from Escherichia coli in the SCOP database.  This form of the enzyme, represented in PDB by three different structures (1dos, 1b57, and 1zen), forms a separate family in the aldolase superfamily, which belongs to the TIM barrel fold, which belongs to alpha and beta (a/b) class of proteins.  Eukaryotic fructose-1,6-bisphosphate aldolases (Schiff base-forming, metal-independent) belong to a large family of class I aldolases in SCOP (Fig. 3.8)


Figure 3.10. Some representatives of class I (metal-independent) aldolase family in the SCOP database.  This SCOP family unites enzymes with rather low sequence similarity to each other (according to FSSP alignments, dihydrodipicolinate synthase and fructose-1,6-bisphosphate aldolase have only 10% identical residues), which have, however, a common catalytic mechanism that includes substrate binding to a conserved Lys residue resulting in a formation of Schiff-base intermediate.  This serves as a supplemental evidence for inferring common origin of these enzymes.

3.4.  Specialized Genomics Databases

Since the World Wide Web makes genome sequences available to anyone with an Internet access, there are a variety of databases that offer more or less convenient access to basically the same sequence data. However, there are several convenient web sites that provide useful additional information, such as operon organization, functional predictions, 3D structure, or metabolic reconstructions. 

Entrez Genomes

As complete genome sequences are essentially nothing more than extremely long nucleotide sequences, one can always retrieve them from the NCBI FTP site (ftp://ncbi.nlm.nih.gov/Entrez/Genomes) or the FTP sites of each particular sequencing center. The other two public databases, DDBJ and EMBL, maintain their own genome retrieval systems, referred to as EBI Genomes (http://www.ebi.ac.uk/genomes) and Genome Information Broker (http://www.ncbi.nlm.nih.gov/LocusLink/refseq.htmlhttp://gib.genes.nig.ac.jp

) and . It is important to note that these genomes represent original authors’ submissions and are not immune to the errors mentioned earlier in this chapter. Sometimes, submitters update genome sequences and their annotations. This was done, for example, for E. coli, H. influenzae, M. genitalium, and M. pneumoniae genomes.  For most genomes, however, the sequence and its annotation remain unchanged.  In order to provide updated (and unified) versions of complete genomes, NCBI has recently initiated the Reference Sequences project (RefSeq, ) that links the lists of gene products with some valuable sequence analysis information, such as predicted functions for uncharacterized gene products, frameshifted proteins, and so on (Fig. 3.9).  

Because NCBI also maintains a special BLAST page for searching unfinished genome sequences, contributed by various genome-sequencing centers (http://www.ncbi.nlm.nih.gov/Microb_blast/unfinishedgenome.html) many researchers are confused by the status of all the different databases. One needs to clearly understand the distinction between the three kinds of data kept at the NCBI. Complete genome entries in GenBank are kept exactly as submitted by the genome sequencing center and can be changed only by submitters themselves.  Genome entries in the Genomes division of Entrez, which can be identified by their NC_xxxxxx RefSeq accession numbers, comprise GenBank entries, curated and sometimes modified by the NCBI staff. These entries are supplemented by various tables that present precomputed data on the taxonomic distribution of the of best hits in the database for each protein in the given genome, COG assignments of these proteins (see below), neighbors with known three-dimensional structures, and results of sequence comparison against the CDD (see ♦3.3).  

Finally, the unfinished genome data, submitted by various genome sequencing centers (see ♦8.2.2) are available only for BLAST searches and are kept protected from unauthorized access just like any unpublished GenBank submission; the authors of this book, for example, have no more access to those data than anybody else in the world. 


Figure 3.9.  The front page of NCBI Entrez Genomes web site for Chlamydia trachomatis genome. The sequence data can be retrieved by following the to the GenBank entry of the complete genome, to Chlamydia genomes project at UC Berkeley, and to the NCBI FTP site. One can also view the positions of RNA- and protein-encoding genes or search for genes based on their position or gene name. Additional links show the results of an RPS-BLAST comparison of C. trachomatis proteins against the Conserved Domain Database, whether their best hits in nr belong to Bacteria, Archaea or Eukaryotes, list C. trachomatis proteins that have a close homolog with known 3D structure and show gene location and functions of C. trachomatis proteins represented in the COG database.  Finally, one can compare any given protein against the set of C. trachomatis proteins. 

COGs

The Clusters of Orthologous Groups of proteins database ([Tatusov, 1997 #43; Tatusov, 2000 #209], http://www.ncbi.nlm.nih.gov/COG) has been designed to simplify evolutionary studies of complete genomes and improve functional assignments of individual proteins. Its latest release consists of ~3200 conserved families of proteins (COGs) from each of the completely sequenced genomes. Each COG contains sets of proteins from at least three phylogenetic lineages, which are assumed to have evolved from an individual ancestral protein (i.e. are orthologous). Since orthologs typically perform the same function, delineation of orthologous families from diverse species allows the transfer of functional annotation from better-studied organisms to the less-studied ones.  The protein families in the COG database are separated into 18 functional groups that include a group of uncharacterized conserved proteins and a group of proteins for which only a general functional assignment appear appropriate (Fig. 3.11). 


Figure 3.11.  GOG database page for COG0802, one of the COGs of the R functional group, for which only a general functional prediction was available.  Note that proteins belonging to this COG are found in every sequenced bacterial genome, except for three mycoplasmas, M. genitalium, M. pneumoniae, and Ureaplasma urealyticum (bottom right cell of the table), and absent in archaeal and yeast genomes (top left corner of the table).

The COG database is particularly useful for functional predictions in borderline cases where the protein similarity levels are fairly low. Due to the diversity of proteins in COGs, sequence similarity searches against the COG database (available at http://www.ncbi.nlm.nih.gov/COG/xognitor.html or from ORF finder, http://www.ncbi.nlm.nih.gov/gorf, see ♦3.2) can sometimes suggest a possible function for a protein that otherwise has no clear database hits.  This database also offers some convenient tools for a comparative analysis of complete genomes (see ♦4.2). 

KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.ad.jp/kegg) is a part of a GenomeNet web site, created by Minoru Kanehisa and his associates at the Kyoto University Institute for Chemical Research for comprehensive analysis of complete genomes. KEGG aims at using genome sequences for a complete reconstruction of cellular metabolism and its regulation [Kanehisa, 2000 #365].  The KEGG web site presents a comprehensive set of metabolic pathway charts, both general and specific for each of the completely sequenced genomes, as well as for S. pombe, Arabidopsis, Drosophila, mouse and human. The enzymes that are already identified in a particular organism are color-coded, so that one can easily trace the pathways that are likely to be present or absent in a given organism (Fig. 3.12).  

For each of the metabolic pathways that it covers, KEGG also provides the lists of orthologous genes that code for the enzymes participating in those pathways. It is also indicated whenever these genes are adjacent and 


Figure 3.12.  KEGG pathway for inositol metabolism.  Each rectangle signifies an enzyme, indicated under its EC number, if available, or its gene name.  Each circle signifies a chemical substance (an intermediate of the pathway).  Selecting the "Homo sapiens" option showed that only two enzymes of the pathway (indicated by two darkened rectangles) have been identified in humans. 

form likely operons. A very convenient search tool allows the user to compare two complete genomes and identify all cases where conserved genes in both organisms are adjacent or located close (within five genes) to each other. The KEGG site is continuously updated and serves as an ultimate source of data for the analysis of metabolism in various organisms. 

WIT/ERGO

The WIT (What Is There) database was originally developed by Ross Overbeek and Evgeni Selkov at the Argonne National Laboratory in Argonne, IL.  It is currently maintained in two different variants, as WIT at the Argonne web site (http://wit.mcs.anl.gov) and under the name ERGO at Integrated Genomics, Inc. (http://ergo.integratedgenomics.com/ERGO) [Overbeek, 2000 #436].  Like KEGG, this system combines diverse tools that assist in functional annotation.  WIT/ERGO is most famous for its operon search tool [Overbeek, 1998 #165; Overbeek, 1999 #38], which is discussed in detail in ♦4.6.2. Like COGs, ERGO delineates clusters of orthologous proteins and uses these clusters to assign functions to the uncharacterized members of each cluster.  In contrast to other databases, discussed in this section, which perform the analysis of only complete genomes, ERGO also includes proteins from many partially sequenced genomes. This allows it to offer many more sequences of the same enzymes from different organisms than any other database, which significantly simplifies recognition of additional members of the corresponding enzyme families.  An interesting feature of ERGO is that it allows registered users to submit their own functional annotations and comments.  Eventually, this might lead to true "community annotation" projects that would offer everybody an opportunity to participate in the process. 

MBGD

The Microbial Genome Database for Comparative Analysis (http://mbgd.genome.ad.jp) at the University of Tokyo is another convenient tool for comparative analysis of completely sequenced microbial genomes. Like COGs, MBGD stores precomputed results of similarity searches between all the ORFs in the complete genomes and attempts to classify them into homology clusters.  In contrast to COGs, however, MBGD assigns homology relationships based solely on BLAST searches with an arbitrary cut-off P-value of 10-2 or better.  MBGD contains a hierarchical list of cellular functions, combined into 16 principal functional groups, and allows one to list the genes that are responsible for a particular function in any given genome. After selective the gene of interest, the user can search for likely homologs of this gene among all other sequenced microbial genomes.

PEDANT

The Protein Extraction, Description and ANalysis Tool (PEDANT, http://pedant.gsf.de), maintained at MIPS, is a useful web resource that presents results of extensive cross-genome comparisons using a variety of popular tools [Frishman, 2001 #363]. The available complete genomes and a number of unfinished genome sequences are analyzed using standard PEDANT queries, such as EC numbers, PROSITE patterns, Pfam domains, BLOCKS, and SCOP domains. Because these queries comprise some of the most common questions asked in genome comparisons, PEDANT can be used as a convenient entry point into the field of comparative genome analysis. For example, if you want to find out how many proteins in H. pylori have known (or confidently predicted) 3D structure, or how many NAD+-dependent alcohol dehydrogenases (EC 1.1.1.1) are encoded in the C. elegans genome, PEDANT provides an easy way to do that (Fig. 3.10). 

As a service to the PIR user, PEDANT queries also include PIR keywords and PIR superfamilies, as well as yeast function categories. Although PEDANT does not allow the users to enter their own queries, the variety of data available at this web site makes it a useful tool for comparative and functional genomics. 


Figure 3.10.  PEDANT list of histidinol dehydrogenases (EC 1.1.1.23) encoded in completely sequenced genomes.  The list on the left panel shows precomputed categories for cross-genome search in PEDANT.

TIGR Databases 

The Institute for Genomic Research (http://www.tigr.org) maintains several useful databases including the Comprehensive Microbial Resource (CMR, http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl), devoted to the analysis of bacterial and archaeal genomes [Peterson, 2001 #704], the TIGR Parasites Database (http://www.tigr.org/tdb/parasites) that provides links to protozoan sequencing projects under way at TIGR, and TIGR Gene Indices (http://www.tigr.org/tdb/tgi.shtml) that integrate the data from eukaryotic genome sequencing and EST projects.

The CMR combines information on all publicly available completely sequenced genomes with pre-publication data on the genomes, sequenced at TIGR. It offers a variety of search and display options, including a convenient genome browser that lists, for each gene, the evidence on which its annotation is based (e.g., HMM match, BLAST match, or PROSITE match). It also aligns one to align the DNA sequences of any two microbial genomes using MUMmer [Delcher, 1999 #705]. The Restriction Digest Tool searches the genomic sequences for cutting sites recognized by most commonly used restriction endonucleases. The results can be displayed in a variety of formats, including a genomic map showing the cutting sites, a list of the predicted restriction fragments, DNA sequences of these fragments, and an image showing predicted positions of these fragments on an agarose gel. 
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Figure 3.12.  A TIGR Comprehensive Microbial Resource map of the H. influenzae chromosome showing the positions of SalI and SpeI restriction sites. 

Other CMR options include the possibility to retrieve from various genomes genes with the same biological role, (e.g., genes involved in amino acid biosynthesis), genes encoding enzymes with the same EC number, common name, and other options similar to those in PEDANT. One can also search for predicted proteins with particular properties, such as isoelectric point, molecular weight, or the number of predicted transmembrane regions. 

The CMR also includes its own version of COGs (see above) and TIGRFAMs, protein clusters built using the HMM searches of protein sets encoded in the complete genomes with Pfam profiles. Finally, the CMR has a well-organized list of all the transfer and ribosomal RNAs, encoded in the complete microbial genomes. 

TIGR Gene Indices (http://www.tigr.org/tdb/tgi.shtml) currently contain tentative consensus sequences (clustered EST sequences) from 12 protists, including Cryptosporidium parvum, Dictyostelium discoideum, Leishmania major, Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma brucei, six fungi, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Neurospora crassa, and Aspergillus nidulans, 12 plants, including Arabidopsis, barley, maize, potato, rice, soybean, tomato, wheat, and cotton, and 13 animal species, such as C. elegans, Drosophila, human, mouse, rat, pig, and zebrafish. Groups of tentative consensus sequences from different organisms that encode similar (likely homologous) proteins form the TIGR Orthologous Gene Alignment database (TOGA, http://www.tigr.org/tdb/toga/toga.shtml). TOGA differs from COGs and other similar databases in an important aspect: instead of proteins, it clusters and aligns DNA sequences.  This results in rather small clusters, composed of closely related, most likely orthologous, sequences (see ♦3.1).  On the other hand, many orthologous genes end up being assigned to different clusters. 

A very important application of the TOGA is the delineation of orthologs to the human disease genes, i.e. genes, mutations in which cause hereditary diseases. These data are organized in a single large table http://www.tigr.org/tigr-scripts/nhgi_scripts/human_disease.pl?name=human_disease that lists genes involved in the pathogenesis of cancer, malformation syndromes, cardiovascular, endocrine, hematological, renal, metabolic, immune, and other disorders. Each such human gene is hyperlinked to the OMIM (see ♦3.5) entry and is accompanied by presumed orthologs from other organisms.  Such a list proves very helpful for the delineation of the conserved motifs in the sequences of such genes and their protein products, which, in turn, helps in the analysis of their functions (see ♦4.4). 
3.5. Organism-specific Databases

In addition to general genomics databases, there exist a variety of databases that center on a particular organism or a group of organisms.  While most of them are useful in some respect, those devoted to model organisms, such as E. coli, B. subtilis, yeast, C. elegans, Drosophila, and mouse are probably the ones most widely used for functional assignments in other, less studied organisms. For someone involved in functional genomics, it is important to be able to quickly verify the plausibility of each particular database entry. Thus, if one has reasons to doubt the database annotation of a particular gene or protein (see ♦3.2), it often helps to check whether a functional assignment made from studies of a particular model organism is accepted by the community of researchers studying that very organism. In addition, organism-specific web sites may contain additional information that is hard to fit into the standard annotation scheme (e.g. viability of mutants, availability of clones,or results of two-hybrid experiments). The following list is by no means complete or even representative; it just covers the databases that the authors find most useful in their own work. 

3.5.1.  Prokaryotes

Escherichia coli

The importance of E. coli for molecular biology is reflected in the large number of the databases dealing specifically with this organism. The research groups of Fred Blattner at the University of Wisconsin-Madison (http://ecoli.aist-nara.ac.jphttp://www.genome.wisc.edu

) and the group of Hirotada Mori at the Nara Institute of Technology (), which carried out the actual sequencing of the E. coli genome, maintain useful web sites, devoted to the post-genomic analysis of E. coli genes.  

Since Blattner group has recently completed sequencing the genome of enteropathogenic E. coli O157:H7 and is currently involved in sequencing of other enteric pathogens, such as E. coli K1, Shigella flexneri, Salmonella typhi, and Yersinia pestis, their web site is most useful as a source of data on these bacteria. It also contains a list of E. coli genes that have been amplified using gene-specific primer pairs and are now available for other researchers. For those who would like to amplify those genes themselves, a complete set of primers for all 4290 E. coli genes, used by the Blattner group, is available from Sigma-Genosys (http://www.genosys.com/expression/frameset.html). There is also a partial list of genes, shown to be essential for growth in E. coli (http://magpie.genome.wisc.edu/~chris/essential.html).

 The group led by Mori coordinates the Japanese GenoBase project (http://ecoli.aist-nara.ac.jp/docs/genobase/index.html), aimed at resolving the functions of still unannotated E. coli genes.  Their web site provides a convenient link from the genomic data to the Kohara restriction map of E. coli and allows one to search for the Kohara clones that cover the region of interest.  The Japanese National Institute of Genetics maintains another useful database, called Profiling of Escherichia coli Chromosome (PEC, http://shigen.lab.nig.ac.jp/ecoli/pec), which contains a detailed description of each E. coli gene, including its location, Kohara clone that covers this gene, information on whether it is essential, results of PSI-BLAST searches of its product against the PDB, PROSITE motifs and Pfam domains present in this protein, and many other pieces of valuable information.

 EcoGene (http://bmb.med.miami.edu/ecogene), a database of E. coli genes, created by Kenneth Rudd at the University of Miami, aims at providing curated sequences of the E. coli proteins. This is a good place to look for frameshifted and potentially mis-translated proteins. For each E. coli gene, EcoGene provides a short description of its function, including alternative gene names and relevant references.

A very useful web site (http://web.bham.ac.uk/bcm4ght6), aptly named “The E. coli index”, is maintained by Gavin Thomas at the University of Sheffield. It contains good links devoted to clinical strains of E. coli, but its major attraction is the list of recent functional assignments in E. coli. The compilation of genes that were annotated since the completion of the genome sequence can be found in the “Completing the E. coli proteome” section (http://web.bham.ac.uk/bcm4ght6/genome.html), whereas the “What's new” section (http://web.bham.ac.uk/bcm4ght6/gennew.html) lists the latest  experimental results.
The web site of the E. coli Genetic Stock Center at Yale University (http://cgsc.biology.yale.edu) lists all the mutant strains of E. coli available in  its collection. It also provides gene linkage and functional information.

The GeneProtEC (http://genprotec.mbl.edu) database, created by Monica Riley at Woods Hole, the Encyclopedia of E. coli Genes and Metabolism (EcoCyc, http://www.ecocyc.org), developed by Peter Karp, and RegulonDB (http://www.cifn.unam.mx/Computational_Biology/regulondb), maintained by Julio Collado-Vides, are interconnected database devoted, respectively, to metabolic and regulatory pathways of E. coli. 

Finally, the Colibri (http://bioweb.pasteur.fr/GenoList/Colibri) database at the Institute Pasteur is specifically designed for a molecular biologist doing experimental work on E. coli.  It has a good web site with an extremely convenient feature that allows one to download the DNA sequence of a given E. coli gene with up to 1 kb upstream and downstream sequence.  This can be useful for designing PCR primers, searching for the convenient restriction sites, delineating promoters and transcription regulator-binding sites, and many other applications.  The Colibri web site has not been updated for quite a while, so its functional information may not be as fresh as in other E. coli databases.   

Bacillus subtilis 

B. subtilis is a popular model organism for microbiological studies. Its genome, like that of E. coli, is the subject of an ongoing functional annotation project. In contrast to E. coli, the data collection is largely centralized with the Subtilist web site maintained at the Institute Pasteur (http://bioweb.pasteur.fr/GenoList/SubtiList), serving as a clearing house for all the new information regarding B. subtilis genome.  Like Colibri, it allows one to download the DNA sequence of a given B. subtilis gene with up to 1 kb upstream and downstream sequence, which can be very useful for experimental studies of this gene. 

For phenotypes of various mutants, one could take a look at the Micado (a.k.a. MadBase) database (http://locus.jouy.inra.fr) at INRA, France. This site also lists 110 B. subtilis genes that had been previously mapped but have not been identified in the complete genome. This list should be considered a challenge for any aspiring student of functional genomics (see study tasks at the end of the chapter).  

The mechanisms of sporulation and its regulation being some of the most studied properties of B. subtilis, there is a useful web-based index of B. subtilis sporulation genes, maintained by Simon Cutting at the Royal Holloway University of London (http://www.rhbnc.ac.uk/biosci/cutting).
Synechocystis sp.

Cyanobacteria-like cells have been found in some of the most ancient rocks on this planet; cyanobacteria were the most likely ancestors of plant chloroplasts and maybe even gave rise to apicomplexan plastids.  Modern cyanobacteria have very unusual gliding motility and carry out oxygenic photosynthesis.  These factors determined the choice of the cyanobacterium Synechocystis sp. PCC6803 as one of the first bacterial genomes to be sequenced.  The Kazusa DNA Research Institute in the Japanese Prefecture of Chiba, which carried out the sequencing of Synechocystis sp. maintains CyanoBase (http://www.kazusa.or.jp/cyano), a database devoted to the post-genomic studies of cyanobacterial genes.  Although most of the CyanoBase gene assignment data can be found elsewhere (in GenBank, COGs, KEGG, WIT, and many other databases), this site contains a useful list of Synechocystis mutants, sorted in the order of the chromosomal locations of the corresponding genes. For each mutant, the list includes whatever functional information is available and provides the address of the researcher that has constructed this mutant.  This resource is expected to grow rapidly, boosted by the recent completion of the genome of the second cyanobacterium, Anabaena (Nostoc) sp. PCC7120.  
3.5.2.  Unicellular eukaryotes

Unicellular eukaryotes are targeted by a number of ongoing genome sequencing projects (see http://www.sanger.ac.uk/Projects/Protozoa) that generate a substantial amount of sequence data.  Accordingly, there exist extensive databases and numerous web sites specifically dedicated to Candida albicans, Dictyostelium discoideum, Entamoeba histolytica, Leishmania major, Neurospora crassa, Plasmodium falciparum, Pneumocystis carinii, and other unicellular eukaryotes (see ♦3.2). However, only yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have been sufficiently studied biochemically to generate a database that would be useful in annotating other genomes.  For this reason, databases devoted to yeast remain the major source of data for genome annotations for most of other eukaryotes, including the protozoa. 

Yeast

The baker’s yeast Saccharomyces cerevisiae was the first eukaryote with a completely sequenced genome [Goffeau, 1996 #20]; it is arguably the best characterized and the most studied of all eukaryotic organisms. There are a several databases specifically devoted to the functional analysis of yeast genome, including three major ones, the Saccharomyces Genome Database (SGD) at Stanford University (http://genome-www.stanford.edu/Saccharomyces), the Yeast Database at MIPS (http://mips.gsf.de/proj/yeast), and Yeast Protein Database (YPD) at Proteome, Inc. (http://www.proteome.com/databases). All three resources, SGD, MIPS, and YPD, provide useful up-to-date information on the current status of the yeast genome analysis, including periodically updated lists of proteins with known or predicted functions, phenotypes of mutants (if available), protein-protein interactions, gene expression patterns, and others.  For each gene, there is a list of appropriate references that help in understanding its cellular role even if the exact function is still obscure. Although there is a significant overlap in the data kept in these three databases, it is often useful to check each of them when searching for information about a particular yeast protein.  The SGD entries are interlinked with the yeast Gene Registry (http://genome-www.stanford.edu/Saccharomyces/registry.html) that keeps a complete list of all standard and non-standard names of S. cerevisiae genes. For those who provide functional characterization of novel yeast genes, this list includes useful links to SGD Gene Naming Guidelines and Gene Registry Form. It also has a link to Global Gene Hunter (http://genome-www.stanford.edu/cgi-bin/SGD/geneform), a simple but convenient search engine that looks for the given yeast gene in SGD, YPD, PIR, SWISS-PROT, GenBank, PubMed, and Sacch3D (yeast protein structures) databases. 

The MIPS yeast database serves as a resource for the new results coming from the multinational EUROFAN project [Dujon, 1998 #381].  YPD is a commercial site, but is free for academic users.  

There are several other useful sites for yeast genome analysis. TRIPLES, TRansposon-Insertion Phenotypes, Localization, and Expression in Saccharomyces database (http://ygac.med.yale.edu), maintained by Michael Snyder’s laboratory at Yale University, tracks the expression of transposon-induced mutants and the cellular localization of yeast proteins, tagged with a novel Tn3-derived minitransposon developed in the Snyder lab. It also offers a convenient search for the phenotypes of insertion mutants, including insertions into non-annotated short (< 100 codons) open reading frames. 

Yeast Mitochondrial Protein Database (http://bmerc-www.bu.edu/mito) at Boston University presents a useful compilation of information regarding both proteins encoded in the mitochondrial genome and those encoded within the nuclear genome and posttranslationally imported into the mitochondria.
Ron Davis’ lab at Stanford University (http://genomics.stanford.edu) maintains the Saccharomyces Genome Deletion Project, aimed at creating and characterizing PCR-generated deletion mutants in every yeast gene. Although the complete database is currently open only to members of the consortium, the strains generated in the course of the project are available to other researchers and can be searched through the project web site. The Davis lab also maintains the Saccharomyces Cell Cycle Expression Database that presents first results on the changes in the mRNA transcript levels during the yeast cell cycle. A list of regulatory elements and transcriptional factors in yeast is kept in the Saccharomyces cerevisiae Promoter Database (http://cgsigma.cshl.org/jian) at Cold Spring Harbor Laboratory. 

3.5.3.  Multicellular eukaryotes

The Human Genome Project and related projects of complete genome sequencing of model organisms, such as worm, fruit fly, pufferfish, mouse, and rat, resulted in a proliferation of web sites that try to make use of genomic sequence data. Only few of them, however, are concerned with sequence annotation, that is specialize in predicting genes and evaluating their likely functions. In this section we review only those databases that are likely to help a beginner gene hunter in finding functional assignments.  

Thale cress Arabidopsis thaliana
Arabidopsis thaliana, the first flowering plant whose genome has been sequenced [Arabidopsis Genome Initiative, 2000 #361], is widely used as a model organism in plant biology.  The Arabodopsis Information Resource (TAIR, http://www.arabidopsis.org), a collaboration between the Carnegie Institution of Washington Department of Plant Biology at Stanford University and the National Center for Genome Resources, a nonprofit company in Santa Fe, New Mexico, serves as the principal resource on the Arabidopsis biology [Huala, 2001 #708].  The primary sources for Arabodopsis genome annotation are the TIGR Arabidopsis thaliana Database (http://www.tigr.org/tdb/e2k1/ath1), MIPS Arabidopsis thaliana database (http://mips.gsf.de/proj/thal/db/index.html), and Stanford\Penn\PGEC database of Arabidopsis thaliana Annotation (DAtA, http://sequence-www.stanford.edu/ara/SPP.html).  Useful web sites are also maintained at the Kazusa DNA Research Institute (KAOS, http://www.kazusa.or.jp/kaos) and Cold Spring Harbor Laboratory http://nucleus.cshl.org/protarab). 

Worm Caenorhabditis elegans
The nematode worm Caenorhabditis elegans has been a favorite model for developmental biology for many years.  With the availability of (almost) complete genome of C. elegans, it is now becoming a target of functional genomics efforts.  In a growing number of cases, experimental data obtained studying a C. elegans protein turn out to be helpful for understanding functions of related proteins in fruit fly and/or vertebrates.  

     WormBase (http://www.wormbase.org or http://wormbase.sanger.ac.uk) is a unified public resource on C. elegans biology, jointly maintained by researchers from CalTech, Cold Spring Harbor Laboratory, Washington University, The Sanger Centre, and CNRS (France) with contributions from scientists from all over the world [Stein, 2001 #703]. WormBase combines mapping and sequencing data with phenotypic information about C. elegans. It has a powerful search engine that allows one to search the database by allele name, gene name (predicted or confirmed), cosmid or YAC clone name, author name, or GenBank accession number. WormBase has a convenient sequence viewer that displays positions of predicted curated and uncurated genes, results of transcriptional profiling, and RNA inhibition (RNAi) experiments. WormBase also contains a Pedigree Browser showing the complete cell lineages for the male and hermaphrodite organisms and information that describes each cell. 

WormPD (http://www.proteome.com/databases/index.html), like YPD, is a protein database maintained at Proteome Inc. [Costanzo, 2001 #330]. It is a very useful resource for annotation of the C. elegans proteins that is being continuously updated.  WormPD has a convenient search engine that allows one to search the database by keywords and/or categories (organismal role, biochemical function and cellular role, mutant phenotype, subcellular localization, molecular environment, post-translational modification, number of introns in the gene, and chromosomal location of the gene) as well as by properties of the predicted proteins (isoelectric point, molecular weight, codon adaptation index, and the number of potential transmembrane segments). By following the ‘WormPD Facts’ link, the user can retrieve the updates made within the last week.

As the work on the C. elegans genome sequence continues, the web sites of the Sanger Centre (http://www.sanger.ac.uk/Projects/C_elegans) and the Washington University (http://genome.wustl.edu/gsc/Projects/C.elegans) continue to serve as valuable data sources for sequenxce updates.

Fruit fly Drosophila melanogaster
FlyBase (http://flybase.bio.indiana.edu/), produced by a consortium of researchers at Harvard University, University of Cambridge, Indiana University, UC Berkeley, and the EBI and mirrored in Japan, Taiwan,  Australia, France, and Israel, is the ultimate data source on Drosophila melanogaster and related species. It contains a wide variety of Drosophila-related links, including one to the Insect Biology and Ecology site at Cornell University (http://www.nysaes.cornell.edu/ent/biocontrol/info/primer.html), which provides the introductory information on Drosophila and other insects. Another good site for an introduction to the Drosophila world is the Drosophila Virtual Library (http://ceolas.org/fly/). 
GadFly (Berkeley Drosophila Genome Project, http://www.fruitfly.org) is another comprehensive resource that allows one to search the Drosophila genome annotations by name, chromosomal position, molecular function, or protein domain.  The important research on the development and functioning of Drosophila nervous system is collected by FlyBrain database at the University of Arizona in Tucson (http://flybrain.neurobio.arizona.edu), which is mirrored at the web sites of University of Freiburg, Germany (http://flybrain.uni-freiburg.de/) and National Institute for Basic Biology in Okazaki, Japan (http://flybrain.nibb.ac.jp) 

InterActive Fly (http://sdb.bio.purdue.edu/fly/aimain/1aahome.htm) is a superb collection of information on tissue and organ development in Drosophila, compiled by Thomas and Judith Brody [Brody, 1999 #423] and hosted at the Society for Developmental Biology web site. It lists development-related genes by name (in alphabetical order), by biochemical function (e.g. transcription factors, receptors), and by developmental pathways (maternal genes or zygotically transcribed genes). For convenience, there is a separate listing of the most recent additions to the database.  Arguably the most interesting part of the database is the listing of 36 evolutionarily conserved developmental pathways, common for Drosophila and other organisms, such as vertebrates (http://sdb.bio.purdue.edu/fly/aimain/aadevinx.htm). 

Drosophila microarray project (http://quantgen.med.yale.edu) aims to define the gene expression patterns of Drosophila genes in vivo using DNA microarrays. It can be very useful for predicting gene function(s) of an unknown gene based on its co-expression with a previously characterized gene (see ♦3.8.2).

Finally, Drosophila Community Portal at CyberGenome Technologies (http://www.cybergenome.com/drosophila) contains a good collection of protocols for experimental work on Drosophila. 

Human

Although we discuss the human genome sequencing and its perspectives in detail later in the book (♦5.4???), there are some databases that definitely deserve to be mentioned in this chapter. 

Because, unfortunately, a significant part of our knowledge about human genes comes from the analysis of hereditary diseases, Online Mendelian Inheritance in Man (OMIM™, http://www.ncbi.nlm.nih.gov/Omim), a catalog of human genes and genetic disorders, is probably the most important resource on the functions of human genes. This database is based on the book “Mendelian Inheritance in Man” written by Victor McKusick and his colleagues at the Johns Hopkins University. The on-line version of the text and the database were developed at the NCBI. Recently, OMIM has become accessible through Entrez and now it can be queried using Entrez retrieval system (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) just like other NCBI databases. OMIM is supplemented with the OMIM Morbid Map (http://www.ncbi.nlm.nih.gov/htbin-post/Omim/getmorbid), an alphabetic list of all the disease genes described in OMIM with their cytogenetic map locations. The reader of this book that has not become completely familiar with Entrez queries by now, should stop reading right here and spend at least several hours studying the syntax of OMIM queries and learning how even minor changes in the search pattern can affect the output.  Because it is intended for use by physicians and their patients who might be unfamiliar with the Entrez system, OMIM has its own extensive help file (http://www.ncbi.nlm.nih.gov/entrez/Omim/omimhelp.html), which contains detailed descriptions of the possible search strategies and databases linked to OMIM. In addition, there is a detailed list of frequently asked questions (http://www.ncbi.nlm.nih.gov/entrez/Omim/omimfaq.html). Quite frankly, once you become comfortable with OMIM and its numerous links, it is hard to find a more fascinating reading. 

Genes and Disease (http://www.ncbi.nlm.nih.gov/disease) section of the NCBI web site features a collection of equally absorbing but much easier to comprehend texts that contains fewer references and are intended for a more general audience than OMIM. This is a good site for introductory reading on most common human genetic diseases, such as Alzheimer disease, phenylketonuria, Marfan syndrome, diastrophic dysplasia, muscular dystrophy, and many others. This site also contains some useful information on the genetic roots of cancer, atherosclerosis, and obesity. 

LocusLink (http://www.ncbi.nlm.nih.gov/LocusLink), is a new NCBI resource that provides a simple unified query interface to curated portions of human, mouse, rat, fruit fly, and zebrafish genomes.  It can be used to search the RefSeq records that contain a variety of genetic information, such as official nomenclature, sequence accession numbers, EC numbers, UniGene clusters, dbSNP links, and STS marker links as well as other resources. RefSeq records are created by a combination of automated data processing with subsequent manual curation by NCBI staff, which also adds links to the relevant publications in PubMed (see ♦3.8).  The latest release of LocusLink included 20,582 human records, 32,014 mouse records, 4,164 records for rat, 18,879 records for Drosophila, and 1,194 records for zebrafish. 

LocusLink entries are also interlinked with HomoloGene (http://www.ncbi.nlm.nih.gov/HomoloGene), a collection of homologous genes in human, mouse, rat, fruit fly, zebrafish, and cow genomes, obtained from published reports and by nucleotide sequence comparisons between ESTs from each pair of organisms.  It includes over 7,000 cases of putative orthologs in human, mouse and rat genomes. In contrast, it contains just over 200 putative orthologs found in human, rodent (mouse or rat), and zebrafish. 

Genomic Information for Eukaryotic Organisms database, euGenes (http://iubio.bio.indiana.edu/eugenes), maintained at the Center for Genomics and Bioinformatics at Indiana University, Bloomington, presents data automatically collected from the primary databases and available through a common convenient interface. Information available through euGenes includes gene name, gene symbol, its chromosomal location, function, structure and similarity of the gene product.

Table 3.3 Gene number statistics from euGenes

	Organism
	Genes 

	
	Experimentally determined
	Predicted
	Total

	
	
	
	

	Homo sapiens 
	22,052
	14,997
	37,049

	Mus musculus 
	
	
	28,210

	Danio rerio 
	
	
	1,221

	Drosophila melanogaster 
	13,957
	9,692
	23,649

	Caenorhabditis elegans 
	3,866
	18,015
	21,881

	Arabidopsis thaliana 
	
	
	26,819

	Saccharomyces cerevisiae 
	4,724
	2,502
	7,226


3.6.  Taxonomy, Protein Interactions, and Other Databases

3.6.1. Taxonomy databases

NCBI Taxonomy

To organize its sequence data in accordance with the existing phylogenetic classification, NCBI maintains its own Taxonomy database (http://www.ncbi.nlm.nih.gov/Taxonomy), which contains the names of all organisms that are represented in GenBank. Although NCBI taxonomy database is not in itself an authority it phylogenetic or taxonomic issues, it attempts to provide a common-sense taxonomic classification based on a variety of sources, including the published literature, web-based databases, and the advice of sequence submitters and outside taxonomy experts. 

The database has a hierarchical structure with six root-level taxa, Archaea, Eubacteria, Eukaryota, Viroids, Viruses, and Unclassified (the latter group - for uncultured environmental samples). For convenience, plasmids and other synthetic constructs are grouped together as “Other”. The Taxonomy database offers a convenient way to extract nucleotide or protein sequences from all organisms that belong to a particular genus, family or higher taxonomic group. One needs just to follow the taxonomic tree to the desired taxon. In case the user is unsure about the exact spelling of an organism name, there is a nifty "phonetic search" option that would search for similarly sounding names, so that an unfortunate researcher that entered "Drozofila" as a search pattern would not be completely lost. 


The Taxonomy database offers a useful tool that allows one to construct and display a phylogenetic tree for a selected set of organisms.  For the organisms that are most commonly used in molecular biology, a tree can be obtained simply by going to the Taxonomy database home page in Entrez (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy), selecting the desired organisms and clicking on the “Display Common tree” option.  After that, one can edit the resulting tree by adding and deleting species and selecting a complete or abbreviated lineage for each of them. Strictly speaking, the tree obtained from this database is only a taxonomic dendrogram, rather than a true phylogenetic tree. Nevertheless, it offers a convenient look at the taxonomic relationships between the selected organisms. The same tool can be reached from the BLink page for any protein in Entrez Proteins (see ♦3.2.2) by selecting the “Common Tree” option.

Ribosome Database Project

For those who want to see full-fledged phylogenetic tree based on the small subunit rRNA sequence, the place to look is the Ribosomal Database Project at Michigan State University (RDP, http://rdp.cme.msu.edu, mirrored at the Japanese National Institute of Genetics, http://wdcm.nig.ac.jp/RDP). The latest release of RDP provides a variety of precomputed phylogenetic trees for various groups of organisms, accompanied by a sensible tutorial. These trees range from incredibly large ones, such as full prokaryotic tree with 7322 nodes, full eukaryotic tree with 2055 nodes, and full mitochondrial tree with 1503 nodes, to general trees of domains Bacteria (197 nodes) and Archaea (107 nodes) to more specific trees, covering, for example, only genus Escherichia (105 nodes) or genera Treponema and Spirochaeta (132 nodes). The trees can be viewed and edited using a Java-based viewer and saved as pictures or in the standard nested tree format that can be read by TreeView [Page, 1996 #1343] and other programs. To our disappointment, the phylogenetic tree of organisms with completely sequenced genomes is not available yet, although 16S rRNA sequences of most of them are included into at least some precomputed trees.

3.6.2.  Signal transduction and protein-protein interaction databases

TRANSFAC

The Transcription Factor database (TRANSFAC, http://transfac.gbf.de, also available at http://www.gene-regulation.de) compiles data about eukaryotic regulatory DNA elements and protein factors interacting with them [Wingender, 2000 #418; Wingender, 2001 #417].  It is maintained by Edgar Wingender and colleagues in Braunschweig, Germany, and mirrored at several sites around the world.  The database consists of six tables that cover transcription factor sites of various eukaryotes. The SITE table lists 4504 individual regulatory sites within 1078 eukaryotic genes.  It also contains 3494 artificial sequences derived from mutagenesis studies, in vitro selection procedures starting from random oligonucleotide mixtures, etc., and 417 consensus binding sequences, mostly taken from [Faisst, 1992 #419].  The GENE table provides short descriptions of each of these 1078 genes, the FACTOR table (2785 entries) describes the proteins binding to these sites, the CLASS table lists 39 classes of transcriptional factors, and the CELL table lists the cellular sources of these proteins.  Finally, the MATRIX table (309 entries) provides nucleotide distribution matrices for some of the transcription factor binding sites.  

TRANSFAC also includes a hierarchical Classification of Transcription factors (http://transfac.gbf.de/TRANSFAC/cl/cl.html).

BRITE

The Biomolecular Relations in Information Transmission and Expression database (http://www.genome.ad.jp/brite_old), a part of KEGG (see ♦3.5), has long been known as a useful collection of regulatory pathways, including cell cycle controlling pathways in human and yeast, development controlling pathways in Drosophila, and enzyme regulatory mechanisms from KEGG. This database has been recently expanded (http://www.genome.ad.jp/brite) and is now intended to serve as a collection of diverse data on all possible kinds of relations between any two proteins. It includes data on generalized protein-protein interactions (e.g. such as in the KEGG pathway diagrams), experimental data on protein-protein interactions obtained from yeast two-hybrid systems, sequence similarity relations calculated using the Smith-Waterman algorithm (see ♦3.3.2.1), expression similarity relations uncovered by microarray gene expression profiles, and cross-reference links between database entries.  Because this site contains data from two large-scale studies of protein-protein interactions in yeast [Ito, 2001 #430; Uetz, 2000 #432], it is currently most useful for the analysis of yeast protein function. 

DIP

The Database of Interacting Proteins (DIP, http://dip.doe-mbi.ucla.edu) is a compilation of experimentally demonstrated protein-protein interactions.  It was created by David Eisenberg and colleagues at the UCLA-DOE Laboratory of Structural Biology and Molecular Medicine to provide a tool for understanding protein function and protein-protein relationships, properties of networks of interacting proteins, and studying protein evolution [Xenarios, 2000 #421; Xenarios, 2001 #420]. The data on protein-protein interactions in DIP come primarily from yeast two-hybrid experiments, although other experimental techniques, such as co-purification, immunoprecipitation (co-immunoprecipitation), binding to affinity columns, in vitro binding assays, etc., are also represented.  DIP database consists of three hyperlinked tables that list 1) protein information, 2) protein–protein interactions, and 3) details of experiments. An additional table links DIP to the YPD database (see ♦3.6.2).  The latest release of DIP lists 3472 interactions between 2659 proteins, reported in 1020 articles [Xenarios, 2001 #420]. Although more than 80% of those interactions have been reported in just a single experiment, they might offer useful hints to the functions of otherwise uncharacterized proteins.  Besides, the fraction of confirmed protein-protein interactions in DIP is steadily growing, which promises that with time the usefulness of this database will only increase.

BIND

The Biomolecular Interaction Network Database (BIND, http://www.bind.ca) was originally developed by Chris Hogue at the Samuel Lunenfeld Research Institute at the Mount Sinai Hospital in Toronto and Francis Ouellette at the Center for Molecular Medicine and Therapeutics of the University of British Columbia in Vancouver. It was recently transferred to a new non-profit company called Blueprint Worldwide to form arguably the most ambitious project in the biological database building. BIND strives to unify protein sequence data with the information on protein-protein interactions and signal transduction pathways and plans to incorporate virtually all interactions between molecules, whether they are composed of proteins, nucleic acids, or small molecules [Bader, 2001 #344].  In addition, there are plans to include photochemical reactions and conformational changes in proteins. Although BIND is only beginning to grow and its first pathway entries might seem cumbersome, it has a great potential, based on the financial support from IBM and Canadian Government.

BioCarta


BioCarta (http://www.biocarta.com) has assembled an impressive list of pathways (http://www.biocarta.com/genes/allPathways.asp), presented as nice colorful images.  The site offers a place for users’ comments, discussion of the pathway itself, and submission of new pathways.  If nothing else, the readers should visit this web site just to enjoy its graphics.

EPD

Eukaryotic Promoter Database (EPD, http://www.epd.isb-sib.ch, [Perier, 2000 #702]) was developed by Philipp Bucher and colleagues at the Swiss Institute for Experimental Cancer Research (ISREC). EPD is a curated non-redundant collection of 1390 eukaryotic promoters with experimentally determined transcription start sites. Each entry contains a description of the initiation site, cross-references to other databases (EMBL\GenBank\DDBJ, LocusLink, Unigene, RefSeq, SWISS-PROT) and bibliographic references.

3.6.3.  Biochemical databases

Biochemical Pathways Map

Anyone working on genome annotation should have a firm grasp of cell biochemistry and be able to quickly recall properties and functions of hundreds of different proteins.  Since very few of us actually remember all the biochemical pathways by heart, there are several useful resources that allow one to take a quick look at the biochemical pathways and figure out whether certain annotation is plausible. 

For many years, almost every molecular biology laboratory had a wall chart of biochemical pathways, created by the retired biochemist Gerhard Mihal at Boehringer Mannheim Corp.  A hyperlinked version of this chart is now available at the ExPASy web site (http://www.expasy.org/cgi-bin/search-biochem-index). For convenience, the chart is split into 120 fields, each representing a small fraction of the map.  One can take a look at the whole map or have a detailed view of one or two adjacent fields. The names of the enzymes and metabolites on this map can be searched as keywords. In addition, the enzyme names are hyperlinked with the ENZYME database (see below), allowing one to associate a reaction with enzyme sequence. 

As discussed above (♦3.5), a useful collection of metabolic pathways is available at the KEGG web site (http://www.genome.ad.jp/kegg).  KEGG charts are much simpler and cover individual pathways, such as, for example, glycolysis or TCA cycle.

ENZYME

The ENZYME database (http://www.expasy.org/enzyme, mirrored at http://us.expasy.org/enzyme) has already been mentioned in the description of SWISS-PROT (♦3.2.2). ENZYME is a convenient source of information on the official nomenclature of enzymes, based on the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (http://www.chem.qmw.ac.uk/iubmb/enzyme). ENZYME lists all the enzymes that have been assigned Enzyme Commission (EC) numbers and describes them with respect to the EC number, recommended and alternative names, catalytic activity, cofactors (if any) and the diseases associated with the deficiency of the enzyme (if known).  Enzymes with known sequences are linked to the corresponding SWISS-PROT entries.  The names of substrates and products of the catalyzed reactions are linked to their chemical structures in the Klotho (http://www.ibc.wustl.edu/klotho) database (where available).

The Nomenclature Committee web site, mentioned above, also contains some very useful enzyme information, including lists of newly approved enzymes (http://www.chem.qmw.ac.uk/iubmb/enzyme/newenz.html), retracted EC numbers, reaction schemes, and references to the original publications.

BRENDA

BRENDA (http://www.brenda.uni-koeln.de) is a comprehensive enzyme information system maintained by Dietmar Schomburg and colleagues at the Institute of Biochemistry of the University of Cologne.  In addition to the information, listed in the ENZYME, each enzyme entry in BRENDA is associated with up to 20 extra parameters, such as specific activity, turnover number, KM values with various substrates, pH range, pH optimum, and pH stability, temperature range, temperature optimum, and temperature stability, inhibitors, molecular weight, and many others. Each entry is accompanied by extensive bibliography.  While these data are very interesting from purely enzymological standpoint, they prove invaluable when one needs to evaluate the substrate specificity of an enzyme encoded in a newly sequenced genome or to decide whether a given ORF can catalyze the given reaction (see ♦4.2). 

LIGAND


The LIGAND database (http://www.genome.ad.jp/dbget/ligand.html) is a part of the GenomeNet site, maintained by the Kanehisa laboratory at the Kyoto University. LIGAND is a site dedicated to enzymes and their substrates and tightly interlinked with KEGG (see ♦3.5).  Its entries are somewhat similar to the ones in ENZYME, but contain a much larger library of structures of enzyme substrates, specifically drawn for this database using the ISIS/Draw program (MDL Information Systems, http://www.mdli.com). This allows the user to see and, if necessary, save those structures, which definitely helps to understand the function(s) of each particular enzyme. In addition, for each metabolic enzyme, LIGAND would list its representation in the completely sequenced genomes.

AAindex

The AAindex (http://www.genome.ad.jp/dbget/aaindex.html) is yet another database from the Kanehisa Laboratory that provides an exhaustive listing of various amino acid indices and similarity matrices [Kawashima, 2000 #427]. Indeed, amino acids can be grouped based on their physico-chemical and biochemical properties, such as the propensity to form alpha-helix, turn or a beta-strand, hydrophobicity, polarity, bulkiness, and many other.  AAindex currently lists 434 such amino acid indices that all come handy for one particular task or the other. In addition, amino acids can be grouped based on their exchangeability in protein sequences, similar to the matrix shown on Figure 3.1. Again, these matrices can be very different depending on the evolutionary distances between proteins, on whether they are soluble or membrane-bound, globular or non-globular, and so on (see also ♦3.3.1.1).  AAindex currently lists 66 such amino acid substitution matrices that all can be used for evaluating sequence similarity between different proteins. 

PMD

Protein Mutant Database (PMD, http://pmd.ddbj.nig.ac.jp), maintained at the DDBJ, is a collection of literature references that describe various mutations, naturally occuring in proteins or induced by mutagenesis. PMD allows one to submit a protein sequence that will be compared against the sequences in the PMD using a straightforward text matching.  If a match is found, the mutated amino acid residues wold be indicated, linked to the articles that describe these mutations.  Unfortunately, the text matching tool in PMD is rather weak and cannot recognize sequences with less than 30% identity. Nevertheless, PMD is the only database, other than SWISS-PROT, that consistently records mutation data, which could be very useful in delineating the likely active sites of poorly characterized enzymes (see ♦4.3). 

tRNA database

The Genomic tRNA Database (GtRDB, http://rna.wustl.edu/GtRDB) lists the tRNAs identified in the complete genome sequences by the program tRNAscan-SE [Lowe, 1997 #727]. This site offers a much more comprehensive list of tRNAs than the TIGR's Comprehensive Microbial Resource (http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl).

3.7.  PubMed

All the biological and medical information that was discussed in the previous paragraphs ultimately comes from scientific literature. We have already discussed the potholes that result from sequence annotations, not supported by peer-reviewed publications (♦3.2.3).  We have also mentioned that most GenBank, Entrez Proteins, MMDB, COG, and OMIM entries are interlinked with the abstracts of the corresponding papers found in PubMed (http://www.ncbi.nlm.nih.gov/PubMed, also available as http://pubmed.gov). Although the authors have had a pleasure of meeting scientists (and corporate executives) who were totally unaware of the very existence of this tool, any reader who has made it this far through the book should have become familiar with PubMed. PubMed now lists more than 11 million scientific articles, which makes the ability to find the correct reference quickly a useful skill that requires at least some training. Because the NCBI web site contains a PubMed overview, a vast PubMed help file, a list of frequently asked questions about PubMed, and even a detailed down-to-earth tutorial (http://www.nlm.nih.gov/bsd/pubmed_tutorial/m1001.html), we consider here only several of the less trivial aspects of PubMed searches.

The first thing to know about PubMed is that while it contains over 11 million citations, it does not and was never intended to cover all the biological literature.  For example, it has a poor coverage of plant science, environmental research, and many other areas of biology that are not immediately related to human health.  Also, PubMed lists very few papers published before 1965 (some papers from 1958 through 1965 are kept in OldMEDLINE database, available through the NLM Gateway, http://gateway.nlm.nih.gov/gw/Cmd, which is not very fast). Therefore, even a very sophisticated PubMed search cannot fully replace an old-fashioned visit to the local university library.  

The full list of journals, indexed by PubMed, is available through the Journal Browser (http://www.ncbi.nlm.nih.gov/entrez/jrbrowser.cgi), which also allows browsing selected journals issue by issue.  

3.7.1.  Specifying the terms in PubMed search 

By default, PubMed looks for a combination of all the terms entered in a query; i.e. each term is treated as a required string.  The simplest way to find a reference is just to enter into the search field as many relevant terms as possible. This method works surprisingly well, especially for topics that happen to deviate from the mainstream health research.  On the other hand, entering popular search terms like "AIDS" and "drug" would return more than 15,000 citations and force one to narrow down the search.  PubMed has a special option, called "Single Citation Matcher", which allows one to enter various bits and pieces of citation information (the author, year, title, and journal of the publication). 

Boolean operators

For more sophisticated queries, it is best to specifically indicate the field(s) to be searched and to connect them with appropriate Boolean operators AND, OR, and NOT (PubMed requires that these be in caps).  The operator AND is used in PubMed by default, so it only needs to be put in complex Boolean search patterns that contain different fields (see below).  This operator requires that both terms connected by it appear in the citation; it is used to narrow down the search space.  The operator OR allows either of the specified search terms to appear in the output; it is often used to expand the search space to include synonyms or otherwise similar subjects. The operator NOT is used to exclude certain terms from the search. It can significantly narrow down the search space and might remove relevant entries that just happen to include the deselected word.  The use of Boolean operators can dramatically improve search efficiency, especially when used in combination with terms from correctly selected fields.  Most of the fields used by PubMed are self-explanatory, but some are not. Use of the fields illustrated below is not entirely straightforward, but may be convenient in certain circumstances.

Affiliation [AFFL]

Looking for works by an author [AUTH] with a common last name, such as Smith or Green, can be very frustrating. For example, a search for publications by Janet L. Smith (Smith JL[AUTH]), a Purdue University biochemist specializing in amidotransferases, returns 930 papers authored by various John L. Smiths from all over the world, including, fittingly, "A primary care intervention for depression" by Jeffrey L. Smith from the University of Colorado. However, entering the search pattern 

Smith JL[AUTH] AND Purdue[AFFL] 

would allow one to retrieve a collection of papers by Janet Smith on various topics, not just amidotransferases, at the same time avoiding the sea of unrelated citations.  Of course, this search would miss all those papers where Purdue University was not entered as an affiliation, including the most recent review of amidotransferase mechanisms [Zalkin, 1998 #433], but that is a different headache.

Journal [JOUR] and Publication Date [PDAT]

It has probably happened to everyone: just before the vacations, you had read a very interesting paper in, say, Trends in Biochemical Sciences, but completely forgot what it was about.  What you need to do is to browse back issues of the journal and try figuring out which paper was that.  Short of going to the library, one can use the Journal Browser to retrieve all the papers from that journal 

"Trends Biochem Sci"[JOUR]

and further limit the output to the papers published in July and August of 2000 

"2000/07"[PDAT]:"2000/08"[PDAT]

to come up with a simple search pattern: 

"Trends Biochem Sci"[JOUR] AND ("2000/07"[PDAT]:"2000/08"[PDAT]), which would narrow your search down to just 21 papers. The publication date search can also be entered through the Limits function, see below.

Enzyme Classification [ECNO]

Finally, when searching for information about a specific enzyme or a group of enzymes, it often turns out to be convenient just to use the EC number as the search parameter.  For example, when searching for data on NADP-dependent alcohol dehydrogenases, the last thing one would like to do is to enter NADP, dehydrogenase, and alcohol (1194 citations).  NADP, alcohol, and dehydrogenase (in that order) would return only 455 citations, because MESH system would recognize "alcohol dehydrogenase" as a single search term.  In contrast, entering 1.1.1.2[ECNO] as the search term would return only 162 citations, most of which would be relevant to the topic.

Limits


Because the sheer number of medical publications in the database can be overwhelming, PubMed offers the user a possibility to limit the search to certain values in certain fields.  This alleviates the need to remember the syntax of the examples mentioned above and allows the user to construct fairly compex search patterns.  This feature allows one to select articles published in a specific language and further specify the type of articles to retrieve, e.g. only review papers.  Although the preset limits are geared mostly towards clinical studies, there are several options useful for biologists.  For example, Limits allow one to directly enter the range of acceptable publication dates for the articles to look for.  Importantly, the Entrez date parameter specifies the date when the new citation was added to the database.  By using the Entrez date one can search for papers added to PubMed in the last week, month, or any other period.  


The Limits option is also convenient for the retrieval of protein and nucleotide sequences. For proteins, it allows one to search by gene location (genomic, mitochondrial, or chloroplast DNA) and the database (GenBank, EMBL, DDBJ, PDB, SWISS-PROT, PIR, or RefSeq).  For nucleotide sequences, in addition, it offers the option of excluding patents, sequences of ESTs, STSs, GSS, and/or working draft sequences. This allows the user to significantly reduce the noise caused by the redundancy of GenBank protein and nucleotide databases.

3.7.2. Interpretation of the search pattern

Often enough, a PubMed search would not find the reference that should be there or would return references that seem to have nothing to do with the entered search pattern.  One of the reasons for that is that PubMed does not simply scan all the abstracts for the word or phrase one might enter. Instead, it first searches precompiled indexes of terms in four main lists. It starts by looking for a match in the Medical Subject Heading (MeSH) table. If it does not find a match, it looks in the Journals Table, then in the Phrase List, and finally in the Author Index. As soon as PubMed finds a match in one of those four lists, the search stops. This means that if one enters "Silver" as the search pattern, PubMed would not even look for papers authored by Simon Silver from the University of Illinois at Chicago or any other researcher with that last name. Instead, Pubmed would interpret "silver" as a MeSH term and would ignore it in all other lists. After receiving the report that PubMed has found as many as 23,486 references, very few of which have Silver as an author, one could click "Details" and find out that the word "Silver" was translated by PubMed as 

("silver"[MeSH Terms] OR silver[Text Word]).  

As discussed above, to search for papers authored by Silver, you would need to enter the search pattern "Silver[AUTH]" by typing it or going through the “Limits” option. If you know the author's initial, you could simply enter "silver s", which would be interpreted as a name. Finally, to search for Silver’s papers on Ag+-resistance , one could use the pattern “silver s silver” and end up with a list of 13 references, 7 of which would be relevant.
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Figure 3.13. The “Details” view of the PubMed search for “silver”.

Note the “Translations” line at the bottom.

This option of pressing "Details" to find out how the search terms have been interpreted by PubMed offers an easy way to avoid a lot of confusion.  It also allows the user to modify the search so that PubMed would look exactly for what the user wants.  Consider the following real-life example: you used Triton X-100 to solubilize your protein and want to find an easy way to measure residual Triton X-100 in your sample. Entering simply "triton determination" would brings 6,663 citations, some of which are literally out of this world.  Pressing "Details" would show that your search pattern has been interpreted as follows: 

(("neptune"[MeSH Terms] OR triton[Text Word]) AND ("analysis"[Subheading] OR determination[Text Word]))

Where in the world did “neptune” come from and what does it have to do with triton?  Looking up “neptune” as a MeSH term brings you the following comprehensive answer: 

“Neptune: The eighth planet in order from the sun. It is one of the five outer planets of the solar system.  Its two natural satellites are Nereid and Triton.  Year introduced: 1995.”  

Even if this entry leaves you puzzled about the impact of the planet Neptune on contemporary medical science, it at least explains the link of triton to neptune.  In fact, the PubMed search engine is trying to be as helpful as possible: should you enter triton X-100, it would not need any quatation marks to correctly interpret it as 

("octoxynol"[MeSH Terms] OR triton X-100[Text Word]).  

Looking up octoxynol as a MeSH term reveals yet another reason why there are so many irrelevant references in the output:

“Octoxynol: Nonionic surfactant mixtures varying in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups. They are used as detergents, emulsifiers, wetting agents, defoaming agents, etc. Octoxynol-9, the compound with 9 repeating ethoxy groups, is a spermatocide.”  

This means that if you might want to disallow searching for octoxynol, or you might get distracted by the uses of Triton X-100 that have never been mentioned in biochemistry textbooks.  In the long run, the easiest way is usually to simply include in the search pattern as many relevant terms as possible, hoping that their intersection would turn out to be manageable. In this case, the pattern

triton X-100[Text Word] AND detergent removal method

returns only 39 citations, two of which are definitely relevant.  Pressing the "Related articles" link brings more papers of the same kind and finally allows to move from searching to reading.

3.7.3.  NCBI Bookshelf

None of us is equally proficient in all areas of biology. However, for most cancer researchers, relative ignorance in algology or mycology can be easily forgiven. This is not so for genome annotators, who encounter database hits from Synechocystis or Dictyostelium on a daily basis and need to be able to quickly decide whether those hits and their annotations are plausible and whether those annotations could be applied to human genes. NCBI Bookshelf (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books) project aims at putting classical textbooks on the web and hyperlinking them with MEDLINE abstracts. The third edition of “Molecular Biology of the Cell” by Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and  James D. Watson, published 1n 1994 by Garland Publishing, Inc., has been available on-line for more than a year. Recently, it has been joined by two books, published in 1997 by Cold Spring Harbor Laboratory Press, “C. elegans II”, edited by Donald L. Riddle, Thomas Blumenthal, Barbara J. Meyer, and James R. Priess, and “Retroviruses”, edited by John M. Coffin, Stephen H. Hughes, and Harold E. Varmus. Although the latter two books can be read on-line, their value for PubMed users goes far beyond that. By clicking the “Books” link from the abstract view, the reader can link the terms in that abstract to the same terms in either of the three books. Then, just by clicking the obscure term, the user can jump to the book paragraph that mentions the same term and see it in the proper context. Naturally, this tool works best for subjects that are specifically covered in either of the three books available so far; there are still few links to algae- or fungi-related topics.  Nonetheless, this is a start of a very promising trend that should help one to deal with unfamiliar terminology of even most complex PubMed entries.  

3.8.  Further Reading 

1. January issues of the Nucleic Acids Research. 

Each year, Nucleic Acids Research makes is first issue a “database issue”, specifically dedicated to reviews of various molecular biology databases. Take a look at the database issues of the last several years. You will find in-depth descriptions of some database discussed above, as well as descriptions of many databases not covered in this chapter.  See appendix for additional URLs.  

2. “Analysis of Amino Acid Sequences”, volume 54 of Advances in Protein Chemistry, edited by Peer Bork and published in 2000 by Academic Press, contains a series of excellent reviews, including several related to this chapter. 

“Protein Sequence Databases” by Rolf Apweiler contains a detailed description of TrEMBL and SWISS-PROT, including the processes of creating and editing sequence entries, functional annotation, cross-referencing, etc. A very useful inside look on the inner workings of these popular protein databases helps to better understand their advantages and limitations. 

“Searching Databases to Find Protein Domain Organization” by Alex Bateman and Ewan Birney is a good introduction to protein domains and domain databases.  

“Evolution of Domain Families” by Chris Ponting and colleagues contains an extensive list of most common protein domains that includes their organization, likely functions, and phyletic distribution.  

"Pathway Databases and Higher Order Function" by Minoru Kanehisa gives a detailed description of KEGG and offers a stimulating discussion of the basic principles and approaches to the construction of metabolic databases.

3. “Computer methods for macromolecular sequence analysis”, vol. 266 of Methods in Enzymology, edited by Russell F. Doolittle and published in 1996 by Academic Press, is a very useful supplement to the next chapter of this book. Nevertheless, it also contains several reviews on sequence databases that were only briefly covered in this chapter, including a review of PIR-International by Winona Barker, Friedhelm Pfeiffer, and David George and a review of BLOCKs database by Jorga and Steven Henikoff.  There is also a detailed description of the Sequence Retrieval System (SRS) that is very popular among European bioinformaticists. 

Chapter  IV.  

Principles and Methods of Sequence Analysis 

We aligned sequences by eye.

C.S. Troy et al. Genetic evidence for Near-Eastern origins of European cattle. 

Nature, 2001, vol. 410, p. 1091

This chapter is the longest in the book as it deals with both general principles and practical aspects of sequence and, to a lesser degree, structure analysis. We tried to strike a reasonable balance between generalities and specifics, aiming to give the reader a clear notion of the computational approaches used in comparative and functional genomics, rather than discuss any one of these in great detail. In particular, we refrained from any extensive discussion of the statistical basis and algorithmic aspects of sequence analysis because these can be found in several recent books on computational biology and bioinformatics (see ♦4.10???) and, not less importantly, because we cannot claim to be experts in this area. We have also tried not to duplicate the “click here”-type tutorials, which are available at many web sites. However, we deemed it important to point out some difficult and confusing issues in sequence analysis and warn the readers about the most common pitfalls.  

We start with a brief discussion of the approaches and methods for gene identification in genomic DNA sequences. We then introduce the principles of protein sequence comparison and discuss the notion of sequence complexity, which is critical for understanding the limitations of sequence analysis. The different sequence similarity search algorithms are briefly introduced, after which we concentrate on a more detailed discussion of various flavors of BLAST, currently the most popular tool for sequence analysis. A special section is devoted to the task of analyzing the BLAST output and properly using it for functional annotation of proteins. Because not every protein is going to have a close homolog in the database, we discuss in some detail the promise and limitations of motif-based (domain-based) annotation. We also discuss non-similarity-based methods for functional annotation, such as the use of phyletic patterns, gene neighborhoods and gene (domain) fusions, and prediction of structural features and cellular localization of the protein. The chapter ends with a brief discussion of automated large-scale annotations and the associated problems. 

It is our hope that, after working through this chapter, the reader will have a better understanding of both the science and the art of sequence analysis.

4.1.  Identification of Genes in a Genomic DNA Sequence 

4.1.1.  Prediction of protein-coding genes

Archaeal and bacterial genes typically comprise uninterrupted stretches of DNA between a start codon (usually ATG, but in a minority of genes, GTG, TTG, or CTG) and a stop codon (TAA, TGA, or TAG). A very small number of exceptions to that rule involve important but rare mechanisms, such as programmed frameshift [???]) There seem to be no strict limits on the length of the genes. Indeed, the gene rpmJ encoding the ribosomal protein L36 (Fig. 2.1) in most bacteria is only 111 bp long, whereas the gene for Bacillus subtilis polyketide synthase PksK is 13,343 bp long. In practice, mRNAs shorter than 30 codons are poorly translated, so protein-coding genes in prokaryotes are usually at least 100 bases in length. In prokaryotic genome-sequencing projects, open reading frames (ORFs) shorter than 100 bases are rarely taken into consideration, which does not seem to result in substantial under-prediction. In contrast, in multicellular eukaryotes, most genes are interrupted by introns. The mean length of an exon is ~50 codons, but some exons are much shorter; many of the introns are extremely long, resulting in genes occupying up to several megabases of genomic DNA. This makes prediction of eukaryotic genes a far more complex (and still unsolved) problem than prediction of prokaryotic genes.

Prokaryotes

For most common purposes, a prokaryotic gene can be defined simply as the longest ORF for a given region of DNA. Translation of a DNA sequence in all six reading frames is a straightforward task, which can be performed on line using, for example, the Translate tool on the ExPASy server (http://www.expasy.org/tools/dna.html) or the ORF Finder at NCBI (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). 

Figure 4.1.  Open reading frames of  ≥100 bp encoded on a 10 kb fragment of the Escherichia coli K12 genome from 3435250 to 3445250.  

The picture was generated using the program ORF finder at the NCBI web site (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The six horizontal lines represent frames 1, 2, 3, -1, -2, and -3, respectively. ORFs in each frame are shown as dark boxes. 

Of course, this approach is oversimplified and may result in a certain number of incorrect gene predictions, although the error rate is rather low. First of all, DNA sequencing errors may result in incorrectly assigned or missed start and/or stop codons, because of which a gene might be truncated, overextended or missed altogether. Second, on rare occasions, among two overlapping ORFs (on the same or the opposite DNA strand), the shorter one might be the real gene. The existence of a long “shadow” ORF opposite a protein-coding sequence is more likely than in a random sequence because of the statistical properties of the coding regions. Indeed, consider the simple case where the first base in a codon is a purine and the third base is a pyrimidine (the RNY codon pattern). Obviously, the mirror frame in the complementary strand would follow the same pattern, resulting in a deficit of stop codons [Forsdyke, 1995 #1318]).  The example below shows the ORFs of at least 100 bp located in a 10 kb fragment of the E. coli genome (from 3435250 to 3445250) that encodes potassium transport protein TrkA, mechanosensitive channel MscL, transcriptional regulator YhdM, RNA polymerase alpha subunit RpoA, preprotein translocase subunit SecY, and ribosomal proteins RplQ (L17), RpsD (S4), RpsK (S11), RpsM (S13), RpmJ (L36), RplO (L15), RpmD (L30), RpsE (S5), RplR (L18), RplF (L6), RpsH (S8), RpsN (S14), RplE (L5), and RplX (L24). Although the two ORFs in frame +1 (top line, on the right) are longer (207 aa and 185 aa) than the ORFs in frame -3 (bottom line, 117aa, 177 aa, 130 aa, and 101 aa), it is the latter that encode real proteins, namely the ribosomal proteins RplR, RplF, RpsH, and RpsN.   

Because of these complications, it is always desirable to have some additional evidence that a particular ORF actually encodes a protein. Such evidence comes along many different lines and can be obtained using various methods, e.g. the following ones: 

- the ORF in question encodes a protein that is similar to previously described ones (search the protein database for homologs of the given sequence);

- the ORF has a typical GC content, codon frequency or oligonucleotide composition (calculate the codon bias and/or other statistical features of the sequence, compare to those for known protein-coding genes from the same organism);

- the ORF is preceded by a typical ribosome-binding site (search for a Shine-Dalgarno sequence in front of the predicted coding sequence); 

- the ORF is preceded by a typical promoter (delineate consensus promoter sequences for the given organism, check for the presence of a similar upstream region).

The most reliable of these approaches is a database search for homologs. In several convenient tools, DNA translation is seamlessly bound to the database searches. In the ORF finder, for example, the user can submit the translated sequence for a BLASTP or TBLASTN (see below) search against the NCBI sequence databases. In addition, there is an opportunity to compare the translated sequence to the COG database, which lists proteins from the complete genomes and offers manually curated motif-based annotation (see ♦3.4). A largely similar Analysis and Annotation Tool (http://genome.cs.mtu.edu/aat.html) developed by Xiaoqiu Huang at Michigan Tech [Huang, 1997 #343], also compares the translated protein sequences against  nr and SWISS-PROT; in addition, it checks them against  two cDNA databases, the dbEST at the NCBI and Human Gene Index at TIGR. 


Other methods take advantage of the statistical properties of the coding sequences.  For organisms with highly biased GC content, for example, the third position in each codon has a highly biased (very high or very low) frequency of G and C.  FramePlot, a program that exploits this skew for gene recognition [Ishikawa, 1999 #707], is available at the Japanese Institute of Infectious Diseases (http://www.nih.go.jp/~jun/cgi-bin/frameplot.pl) and at TIGR web site (http://tigrblast.tigr.org/cmr-blast/GC_Skew.cgi). The most useful and popular gene prediction programs, such as GeneMark and Glimmer (see below), build Markov models of the known coding regions for the given organism and then employ them to estimate the coding potential of uncharacterized ORFs.

Inferring genes based on the coding potential and on similarity of the encoded protein sequences to those of other proteins represents the intrinsic and extrinsic approaches to gene prediction [Borodovsky, 1994 #356], which ideally should be combined. One such program, developed specifically for analysis of prokaryotic genomes, is Orpheus (http://pedant.gsf.de/orpheus) [Frishman, 1998 #1319]. Several other algorithms that incorporate both these approaches are aimed primarily at eukaryotes and are discussed below.

Unicellular  eukaryotes

Genomes of unicellular eukaryotes are extremely diverse in their sizes, the proportion of the genome that is occupied by protein-encoding genes and the frequency of introns. Clearly, the smaller the intergenic regions and the fewer introns are there, the easier it is to identify genes. Fortunately, genomes of at least some simple eukaryotes are quite compact and contain very few introns. Thus, in yeast S. cerevisiae, at least 67% of the genome is protein-coding, and only 233 genes (less than 4% of the total) appear to have introns [Patthy, 1999 #341]. Although these include some biologically important and extensively studied genes that encode aminopeptidase APE2, ubiquitin-protein ligase UBC8, subunit 1 of the mitochondrial cytochrome oxidase COX1, and many ribosomal proteins, introns comprise less than 1% of the complete yeast genome. The tiny genome of the intracellular eukaryotic parasite Encephalitozoon cuniculi appears to contain introns in only 12 genes and is practically prokaryote-like in terms of the “wall-to-wall” gene arrangement [Katinka, 2001 #1025]. Malaria parasite Plasmodium falciparum is a more complex case, with ~43% of the genes located on chromosome 2 containing one or more introns [Gardner, 1998 #1320]. Protists with larger genomes often have fairly high intron density. In the slime mold Physarum polycephalum, for example, the average gene has 3.7 introns [Trzcinska-Danielewicz, 2000 #345]. Given that the average exon size in this organism (165±85 bp) is comparable to the length of an average intron (138±103 bp), homology-based prediction of genes becomes increasingly complicated. 

Because of this genome diversity, there is no single way to efficiently predict protein-coding genes in different unicellular eukaryots. For some of them, such as yeast, gene prediction can be done by using pretty much the same approaches that are routinely employed in prokaryotic genome analysis. For those with intron-rich genomes, the gene model has to include information on the intron splice sites, which can be gained from a comparison of the genomic sequence against a set of ESTs from the same organism. This necessitates creating a comprehensive library of ESTs that have to be sequenced in a separate project. Such dual EST/genomic sequencing projects are currently under way for several unicellular eukaryotes (see ♦3.5).

Multicellular eukaryotes

In most multicellular eukaryotes, gene organization is so complex that gene identification poses a major problem. Indeed, eukaryotic genes are often separated by large intergenic regions, and the genes themselves contain numerous introns. Figure 4.2 shows a typical distribution of exons and introns in a human gene, in this case the X chromosome-located gene encoding iduronate 2-sulfatase (IDS_HUMAN), a lysosomal enzyme responsible for removing sulfate groups from heparan sulfate and dermatan sulfate. Mutations causing iduronate sulfatase deficiency result in the lysosomal accumulation of these glycosaminoglycans, clinically known as Hunter's syndrom or type II mucopolysaccharidosis (OMIM: 309900) [Wilson, 1990 #383]. A number of clinical cases have been shown to result from alternative splicing of this gene’s mRNA [Olsen, 1996 #684]. 

Obviously, the coding regions comprise only a minor portion of the gene.  In this case, positions of the exons could be unequivocally determined by mapping the cDNA sequence (i.e. iduronate sulfatase mRNA) back onto the chromosomal DNA. Because of the clinical phenotype of the mutations in the iduronate sulfatase gene, we already know the “correct” mRNA sequence and can identify various alternatively spliced variants as mutations. However, for many, perhaps the majority of the human genes, multiple alternative forms are part of the regular expression pattern [Mironov, 1999 #1322; Brett, 2002 #1321], and correct gene prediction ideally should identify all of these forms, which immensely complicates the task.  

Figure 4.2.  Organization of the human iduronate 2-sulfatase gene. 

This gene is located in the positions 152960-177995 of human X chromosome and encodes a 550-amino acid precursor protein that contains a 25-aa N-terminal signal sequence, followed by eight amino acids that are removed in the course of protein maturation.  Mutations in this gene cause mucopolysaccharidosis type II, also known as Hunter’s disease, which results in tissue deposits of chondroitin sulfate and heparin sulfate. The symptoms of Hunter’s disease include dysostosis with dwarfism, coarse facial features, hepatosplenomegaly, cardiovascular disorders, deafness, and, in some cases, progressive mental retardation (See OMIM 309900). The top line indicates the X chromosome and shows the location of the iduronate sulfatase gene (thick line in the middle). Thin lines on the bottom indicate two alternative transcripts. Exons are shown with small rectangles. The square bracket above the iduronate sulfatase gene marks the region of the gene shown in figure 4.3.

Ideally, gene prediction should identify all exons and introns, including those in the 5'-untranslated region (5'-UTR) and the 3'-UTR of the mRNA, in order to exactly reconstruct the predominant mRNA species. For many practical purposes, however, it would be useful to assemble just the coding exons correctly because this allows one to deduce the protein sequence.  


Figure 4.3.  Sequence of the first two exons of human iduronate sulfatase gene. The figure shows the DNA sequence of the positions 15391-15571 of the human X chromosome. The iduronate sulfatase mRNA and its coding sequence are shown as thick lines; the corresponding amino acid residues are shown under them. "Variation" indicates the positions of mapped mutations causing type II mucopolysaccharidosis.

Correct calling of the exon boundaries relies on the recognition of the splice sites, which is facilitated by the fact that nearly all splice sites conform to consensus sequences that include two nearly invariant dinucleotides at the ends of each intron, a GT at the 5’ end and an AG at the 3’ end.  Non-consensus splice signals are very rare and come in several variants [Hall, 1994 #711; Mount, 2000 #701]. In the 5’ splice sites, the GC dinucleotide is sometimes found instead of GT, although the overall consensus sequence (A,C)AG/GT(A,G)AGT stays the same. The second class of exceptions to the splice site consensus is formed by so-called “AT-AC” introns that have the highly conserved /(A,G)TATCCT(C,T) sequence at their 5’ sites. There are additional variants of non-canonical splice signals, which further complicate prediction of the gene structure and often cause mistakes in gene calling. 

The available assessments of the quality of gene prediction achieved by different programs show a rather gloomy picture of numerous errors in exon/intron recognition. Even the best tools correctly predict only ~40% of genes [Reese, 2000 #713]. Nevertheless, most of the popular gene prediction programs discussed in the next section, show reasonable performance in terms of predicting the ORFs.  The most common errors come from genes with long introns, which may be predicted as intragenic sequences, resulting in erroneous gene fission, and pairs of genes with short intergenic regions, which may be predicted as introns, resulting in false gene fusion.

Another important parameter that can affect ORF prediction is the fraction of sequencing errors if the analyzed sequence.  Indeed, including frameshift corrections was found to significantly improve the overall quality of gene prediction [Burset, 1996 #689]. Several algorithms were described that could detect frameshift errors based on the statistical properties of coding sequences [Fichant, 1995 #700]. On the other hand, error correction techniques should be used with caution because eukaryotic genomes contain numerous pseudogenes. An overly eager frameshift correction runs the risk of wrongly “converting” pseudogenes into functional genes. The problem of discriminating between pseudogenes and frameshift errors is, in fact, quite complex and will likely only be solved by whole-genome alignments of different species or, in certain cases, by direct experimentation, e.g., expression of the gene(s) in question. 

4.1.2.  Algorithms and software tools for gene identification
As discussed above, recognizing genes in the DNA sequences remains one of the most pressing problem in genome analysis. Several different approaches to gene prediction have been suggested and there are several popular programs that are most commonly used for this task (see Table 4.1).  Some of these tools perform gene prediction ab initio, relying only on the statistical parameters in the DNA sequence for gene identification.  In contrast, homology-based methods rely primarily on identifying homologous sequences in other genomes and/or in public databases using BLAST or Smith-Waterman algorithms. Most currently used approaches combine these two approaches to gene prediction. 

The absence of introns and relatively high gene density in most prokaryotic and some genomes of unicellular eukaryotes allows one to use sequence similarity searches as the first step in genome annotation. Genes identified by homology can be used as the training set for one of the statistical methods of gene recognition and the resulting statistical model can then be used for analyzing the remaining parts of the genome.  In most eukaryotes, the abundance of introns and long intergenic regions makes it very difficult to use homology-based methods as the first step unless, of course, one can rely on synteny between several closely related genomes (e.g., human, mouse, and rat). As a result, gene prediction in for multicellular eukaryotes is usually intiated by ab initio methods, followed by similarity searches with the initial exon assemblies.  

A detailed comparison of the algorithms and tools for gene prediction is beyond the scope of this book.  We would only like to emphasize that each of these methods has its own advantages and limitations, and none of them is perfect. Therefore, it is advisable to use at least two different programs for gene prediction in a new DNA sequence, especially if it comes from a eukaryote or a poorly characterized prokaryote. A compison of predictions generated by different programs reveals the cases where a given program performs the best and helps achieving a consistent quality of gene prediction. Such a comparison can be performed, for example, using the TIGR Combiner program (http://www.tigr.org/softlab) which employs a voting scheme to combine predictions of different gene-finding programs, such as GeneMark, GlimmerM, GRAIL, Genscan, and FGenes.

We will describe only several computational tools that are most commonly used for gene prediction in large-scale genome annotation projects (for reasons unknown, but perhaps not purely coincidentally, the names of all these program start with 'G'). 

GeneMark

GeneMark (http://opal.biology.gatech.edu/genemark, mirrored at the EBI web site http://www.ebi.ac.uk/genemark, which has a useful help file) was developed by Mark Borodovsky and James McIninch in 1993 [Borodovsky, 1993 #407]. GeneMark was the first tool for finding prokaryotic genes that employed non-homogeneous Markov model to classify DNA regions into protein-coding, non-coding, and “shadows” (non-coding but complementary to coding).  It has been shown previously that, by multivariate codon usage analysis, the E. coli genes could be classified into so-called typical, highly typical and atypical gene sets, with the latter two groups apparently corresponding to highly expressed genes and horizontally transferred genes [Medigue, 1991 #488]. Accordingly, more than one Markov model was required to adequately describe different groups of genes in the same genome [Borodovsky, 1994 #356; Borodovsky, 1995 #1323]. 

Like other gene prediction programs (see below), GeneMark relies on organism-specific recognition parameters to partition the DNA sequence into coding and non-coding regions and thus requires a sufficiently large training set of known genes from a given organism for best performance. The program has been repeatedly updated and modified and now exists in separate variants for gene prediction in eukaryotic, prokaryotic, and viral DNA sequences [Lukashin, 1998 #682; Shmatkov, 1999 #681; Besemer, 2001 #680]. 
Glimmer

Gene Locator and Interpolated Markov Modeler (GLIMMER, http://www.tigr.org/softlab), developed by Steven Salzberg and colleagues at Johns Hopkins University and TIGR, is a system for finding genes in prokaryotic genomes.  To identify coding regions and distinguish them from noncoding DNA, Glimmer uses interpolated Markov models, i.e. series of Markov models with the order of the model increasing at each step and the predictive power of each model separatel evaluated [Salzberg, 1998 #679].  Like GeneMark, Glimmer requires a training set, which is usually selected among known genes, those genes coding for proteins with strong database hits and/or simply long ORFs.  Glimmer is used as the primary gene finder tool at TIGR, where it has been applied to the annotation of numerous microbial genomes [Fraser, 1997 #16; Fraser, 1998 #17; Nelson, 1999 #35; White, 1999 #294].  

Recently, Salzberg and coworkers developed GlimmerM, a modified version of Glimmer specifically designed for gene recognition in small eukaryotic genomes, such as the malaria parasite Plasmodium falciparum [Salzberg, 1999 #678]. 

Grail

Gene Recognition and Assembly Internet Link (GRAIL, http://compbio. ornl.gov), developed by Ed Uberbacher and coworkers at the Oak Ridge National Laboratory, is a tool that identifies exons, polyA sites, promoters, CpG islands, repetitive elements and frameshift errors in DNA sequences by comparing them to a database of known human and mouse sequence elements [Uberbacher, 1996 #683].  Exon and repetitive element prediction is also available for Arabidopsis and Drosophila sequences. 

Grail has been recently incorporated into the Oak Ridge genome analysis pipeline (http://compbio.ornl.gov/tools/pipeline) which provides a unified web interface to a number of convenient analysis tools. For prokaryotes, it offers gene prediction using Glimmer (see above) and Generation programs, followed by BLASTP searches of predicted ORFs against SWISS-PROT and NR databases and a HMMer search against Pfam.  There is also an option of BLASTN search of the submitted DNA sequence against a variety of nucleotide sequence databases.  

For human and mouse sequences, the Oak Ridge pipeline offers gene prediction using GrailEXP and GenScan (see below), also followed by BLASTP searches of predicted ORFs against SWISS-PROT and NR databases and a HMMer search against Pfam.  Again, the user can perform BLASTN search of the submitted DNA sequence against a variety of nucleotide sequence databases, as well as search for CpG islands, repeat fragments, tRNAs, and BAC-end pairs.  As discussed above, the possibility to directly compare gene predictions made by two different programs is a valuable feature, which is available at the Oak Ridge web site.

GenScan

GenScan (http://genes.mit.edu/GENSCAN.html) was developed by Chris Burge and Samuel Karlin at Stanford University and is currently hosted in the Burge laboratory at the MIT Department of Biology. This program uses a complex probabilistic model of the gene structure that is based on actual biological information about the properties of transcriptional, translational and splicing signals. In addition, it utilizes various statistical properties of coding and noncoding regions. To account for the heterogeneity of the human genome that affects gene structure and gene density, GenScan derives different sets of gene models for genome regions with different GC content [Burge, 1997 #270; Burge, 1998 #273].  Its high speed and accuracy make GenScan the method of choice for the initial analysis of large (in the megabase range) stretches of DNA. GenScan has been used as the principal tool for human gene prediction in the International Human Genome Project [Lander, 2001 #271]. 

GeneBuilder

GeneBuilder (http://www.itba.mi.cnr.it/webgene) performs ab initio gene prediction, using such parameters as GC content, dicodon frequencies, splicing site data, CpG islands, repetitive elements, and many others.  It also utilizes a unique approach that is based on evaluating relative frequencies of synonymous and nonsynomous mismatches to identify likely coding sequences.  In addition, it performs BLAST searches of predicted genes against protein and EST databases, which helps to refine the boundaries  of predicted exons using the BLAST hits as guides.  The program allows the user to change certain parameters, which permits interactive gene structure prediction. As a result, GeneBuilder is sometimes able to predict the gene structure with a good accuracy even when the similarity of the predicted ORF to a homologous protein sequence is low [Milanesi, 1999 #675; Rogozin, 1999 #676].

Table 4.1.  Software tools for ab initio gene prediction 

	Program(s) 
	Author(s),  WWW site
	Training sets are available for:
	Refs.

	GeneMark, GenMark.hmm
	Mark Borodovsky,    http://opal.biology.gatech.edu/ GeneMark
	Human, mouse, rat, chicken, C. elegans, Drosophila, rice, Arabidopsis, yeast, many bacteria and archaea
	[Borodovsky, 1993 #407; Lukashin, 1998 #682; Shmatkov, 1999 #681; Besemer, 2001 #680]

	Glimmer, GlimmerM
	Steven Salzberg,  http://www.tigr.org/softlab 
	Many bacteria and archaea, Plasmodium, Aspergillus, rice, Arabidopsis
	[Salzberg, 1999 #678; Delcher, 1999 #677; Salzberg, 1998 #679]

	Grail, GrailEXP
	Edward Uberbacher, http://compbio.ornl.gov
	Human, mouse, Drosophila, Arabidopsis, E. coli
	[Uberbacher, 1996 #683]

	GenScan 
	Christopher Burge, http://genes.mit.edu/GENSCAN.html
	Human, Arabidopsis, maize
	[Burge, 1997 #270; Burge, 1998 #273]

	GeneBuilder
	Igor Rogozin, Luciano Milanesi http://www.itba.mi.cnr.it/webgene
	Human, mouse, rat, fugu, Drosophila,     C. elegans, Arabidopsis, Aspergillus
	[Milanesi, 1999 #675; Rogozin, 1999 #676]

	Genie
	David Kulp, David Haussler, http://www.cse.ucsc.edu/~dkulp/cgi-bin/ genie
	Human
	[Reese, 2000 #719]


	GeneID
	Roderick Guigo, http://www1.imim.es/software/geneid 
	Human, Drosophila
	[Parra, 2000 #715]

	GeneFinder, Fgenes, Fgenesh
	Victor Solovyev, http://genomic.sanger.ac.uk/gf/ gf.shtml
	Human, Drosophila, C. elegans, Arabidopsis, yeast
	[Salamov, 2000 #721]

	HMMgene
	Anders Krogh, Anders Pedersen, Søren Brunak, http://www.cbs.dtu.dk/services
	Human (vertebrates), C. elegans, Arabidopsis
	[Krogh, 2000 #720]

	GeneFinder, MZEF 
	Michael Zhang, http://www.cshl.org/genefinder
	Human, mouse, Arabidopsis, S. pombe
	[Zhang, 1997 #724]

	GeneParser
	Erik Snyder      http://mcdb.colorado.edu/~eesnyder/ GeneParser.html
	Available only for download
	[Snyder, 1995 #751]


Splice site prediction

Programs for predicting intron splice sites, which are commonly used as subroutines in the gene prediction tools, can also be used as stand-alone programs to verify positions of splice sites or predict alternative splicing sites.  Such programs (Table 4.2) can be particularly useful for predicting non-coding exons, which are commonly missed in gene prediction studies.  

Recognition of the splice sites by these programs usually relies on statistical properties of exons and introns and on the consensus sequences of splicing signals. A detailed study of the performance of one such program, SpliceView, showed that, although the fraction of missed splicing signals was relatively low (~5%), the false positive rate was quite high (typically, one potential splicing signal per 150-250 bases). One should note, however, that such false-positive signals may correspond to rare alternative splicing forms or to cryptic splicing sites (splicing sites that are not active in normal genes and become activated as a result of mutations in major splicing signals) [Rogozin, 1997 #752]. 

Table 4.2.  Software tools for prediction of splicing sites

	Program 
	Author, WWW site
	Training sets
	Refs.

	HSPL
	Victor Solovyev, http://genomic.sanger. ac.uk/gf/gf.shtml
	Human
	[Solovyev, 1994 #758]

	NNSplice
	Martin Reese, http://www.fruitfly.org/ seq_tools/splice.html
	Human, Drosophila
	[Reese, 1997 #757]

	SpliceView
	Igor Rogozin, http://www.itba.mi.cnr.it/ webgene
	
	[Rogozin, 1997 #752]

	NetGene2
	Søren Brunak, http://www.cbs.dtu.dk/ services
	Human,             C. elegans, Arabidopsis
	[Brunak, 1991 #754]

	GeneSplicer
	Steven Salzberg, http://www.tigr.org/softlab 
	Human, Arabidopsis
	[Pertea, 2001 #755]

	SpliceProxi-malCheck 


	Thangavel Thanaraj, http://industry.ebi.ac.uk/ ~thanaraj/MZEF-SPC.html
	Human
	[Thanaraj, 2000 #760]


Combining various gene prediction tools

While the first step of gene identification in long genomic sequences utilizes ab initio programs that can quickly and with reasonable accuracy predict multiple genes, the next step is aimed at verifying these genes through similarity searches. Predicted genes are compared to nucleotide sequence databases, including EST databases, and peptides encoded by these predicted genes are compared to protein sequence databases.  These data are then combined with the information about repetitive elements, CpG islands, and transcription factor binding sites and used for further refinement of gene structure. Thus, homology information is ultimately incorporated into every gene prediction pipeline (see Grail above). There are, however, several programs that primarily rely on similarity search for gene prediction.  Although differing in the details, they all search for the best alignment of the given piece of DNA to the nucleotide or protein sequence in the database.  

Table 4.3.  Software tools for homology-based gene prediction 

	Program
	Authors, WWW site
	Comment  
	Refs.

	INFO
	Michael Laub http://elcapitan.ucsd. edu/~info
	Compares the given DNA sequence against GenBank 
	[Laub, 1998 #761]

	ORFGene
	Rogozin and Milanesi http://www.itba.mi.cnr.it/ webgene/
	Compares translated DNA against SWISS-PROT
	[Milanesi, 1999 #675;]

	PipMaker
	Webb Miller http://bio.cse.psu.edu
	Aligns similar regions in two DNA sequences
	[Schwartz, 2000 #716]

	AAT
	Xiaoqiu Huang http://genome.cs.mtu. edu/aat.html
	Searches the given DNA sequence against dbEST or HGI, or a protein against NR or SWISS-PROT
	[Huang, 1997 #343]

	Procrustes 
	A.Mironov, M.Gelfand, P. Pevzner,     http://www-hto.usc.edu/ software/procrustes
	Explores all possible exon assemblies in the given DNA sequence and finds the multi-exon structure with the best fit to a related protein 
	[Gelfand, 1996 #767]

	GeneWise
	Ewan Birney, Richard Durbin http://www.sanger.ac.uk/ Software/Wise2
	Compares the given protein sequence to a genomic DNA sequence, allowing for introns and frameshifting errors 
	[Birney, 2000 #717]


4.2.  Principles of Sequence Similarity Searches. 

As discussed above, initial characterization of any new DNA or protein sequence starts with a database search aimed at finding out whether or not homologs of this gene (protein) are already available, and if they are, what is known about them.  Clearly, looking for exactly the same sequence is quite straightforward. One can just take the first letter of the query sequence and search for its first occurence in the database, then check if the second letter of the query is the same in the subject. If it is indeed the same, the program could check the third letter, then the fourth, and continue this comparison to the end of the query. If the second letter in the subject is different from the second letter in the query, the program should search for another occurrence of the first letter, and so on.  This would identify all the sequences in the database that are identical to the query sequence (or include it).  Of course, this approach is very primitive computation-wise, and there are sophisticated algorithms for text matching that do it much more efficiently [Binstock, 1995 #452].

Query: 1 MK  
 Query: 1 MKV    Query: 1 MKVR    Query: 1 MKVRA  

Sbjct: 1 MK
 Sbjct: 1 MKV    Sbjct: 1 MKVR    Sbjct: 1 MKVRA  

...     Query: 1 MKVRASVKKLCRNCKIVKRDGVIRVICSAEPKHKQRQG

        Sbjct: 1 MKVRASVKKLCRNCKIVKRDGVIRVICSAEPKHKQRQG

Note that, in the example above, we looked only for sequences that are exactly identical to the query.  The algorithm  would not even find a sequence that is identical to the query with the exception of the first letter. To find such sequences, the same analysis should be conducted with the fragments starting from second letter of the original query, then from the third one, and so on. 

Query1: 1  KVRASVKKLCRNCKIVKRDGVIRVICSAEPKHKQRQG

Query2: 1   VRASVKKLCRNCKIVKRDGVIRVICSAEPKHKQRQG

Query3: 1    RASVKKLCRNCKIVKRDGVIRVICSAEPKHKQRQG

Query4: 1     ASVKKLCRNCKIVKRDGVIRVICSAEPKHKQRQG

Such search quickly becomes very time-consuming, and we are still dealing only with identical sequences. Finding close relatives would introduce additional conceptual and technical problems.  Let us say that sequences that are 99% identical are definitely homologous.  What should one select as the threshold to consider sequences not to be homologous: 50% identity, or 33%, or maybe 25%? These are legitimate questions that need to be answered before one goes any further.  The example of two lysozymes (♦2.1.2) shows that sequences with as low as 8% identity may belong to orthologs and perform the same function.  

As a matter of fact, when comparing nucleic acid sequences, there is very little one could do.  All the four nucleotides, A, T, C, and G, are found in the database with approximately the same frequencies and have roughly the same probability of mutating one into another. As a result, DNA-DNA comparisons are largely based on straightforward text matching, which makes them fairly slow and not particularly sensitive, although a variety of heuristics have been developed to overcome this [Miller, 2001 #1324]. 

Amino acid sequence comparisons have several distinct advantages over nucleotide sequence comparisons, which, at least potentially, lead to a much greater sensitivity. First, because there are 20 amino acids but only 4 bases, an amino acid match carries with it over 4 bits of information as opposed to just 2 bits for a nucleotide match. Thus, statistical significance can be detected for much shorter sequences in protein comparisons than in nucleotide comparisons. Second, because of the redundancy of the genetic code, nearly one third of the bases in coding regions are under a weak (if any) selctive pressure and represent noise, which adversely affects the sensitivity of the searches. Third, nucleotide sequence databases are much larger than protein databases because of the vast amounts of non-coding sequences coming out of eukaryote genome projects; this further lowers the search sensitivity. Finally, and probably most importantly, in contrast to the nucleotide substitutions, different amino acid substitutions occur with substantially different likelihoods. Taking this into account greatly improves the performance of database search methods (see below). Given all these advantages, comparisons of any coding sequences are typically carried out at the level of protein sequences; even when the goal is to produce a DNA-DNA alignment (e.g. for an analysis of substitutions in silent codon positions), it is usually first done with protein sequences, which are then replaced by the corresponding coding sequences. Direct nucleotide sequence comparison is indispensable only when non-coding regions are analyzed. 

4.2.1.  Substitution scores and substitution matrices

The fact that each of the 20 standard protein amino acids has its own unique properties means that the likelihood of the substitution of each particular residue for another residue during evolution should be different. Generally, the more similar the physico-chemical properties of two residues are, the greater the likelihood that the substitution would not have an adverse effect on the protein’s function and, accordingly, on organism’s fitness. Hence, in sequence comparisons, such a substitution should be penalized less than a replacement of amino acid residue with one that has dramatically different properties. This is, of course, an over-simplification because the effect of a substitution depends on the structural and functional environment where it occurs. For example, a cysteine to valine substitution in an enzyme’s catalytic site would certainly abrogate the activity and, in most cases, would have a drastic effect on the organism’s fitness. In contrast, the same substitution within a -strand may have little or no effect. Unfortunately, in general, we do not have a priori knowledge of the location of a particular residue in the protein structure, and even with such knowledge, incorporating it in a database search algorithm would be an extremely complex task. Thus, a generalized measure of the likelihood of each substitution is required so that each instance of different amino acid residues at the same positions could be assigned an appropriate penalty (substitution score) to be used in sequence comparisons. 

There are two fundamentally different ways to come up with a substitution score matrix, i.e. a triangular table containing 210 numerical score values for each pair of amino acids, including identities (diagonal elements of the matrix; Figs. 4.4 and 4.5). As in many other situations in computational biology, the first approach works ab initio, whereas the second one is empirical. The simplest ab initio approach calculates the scores as the number of nucleotide substitutions that are required to transform a codon for one amino acid in a pair into a codon for the other. In this case, the matrix is obviously unique (as long as alternative genetic codes are not considered) and contains only 4 values, 0,1,2 or 3. Accordingly, this is a very coarse grain matrix that is unlikely to work well. Another ab initio method assigns scores on the basis of similarities and differences in physico-chemical properties of amino acids. Under this approach, the number of possible matrices is infinite, and they may have as fine a granularity as desired, but a degree of arbitrariness is inevitable because our understanding of protein physics is insufficient to make informed decisions on what set of properties “correctly” reflects the relationships between amino acids. 

Empirical approaches, which historically came first, attempt to derive the characteristic frequencies of different amino acid substitutions from actual alignments of homologous protein families. In other words, the approaches attempt to determine the actuall likelihoods of each substitution occurring during evolution.  Obviously, the outcome of such efforts critically depends on the quantity and quality of the available alignments, and even now, any alignment library is far from being complete or perfectly correct. Furthermore, simple counting of different types of substitutions will not suffice if alignments of distantly related proteins are included because, in many cases, multiple substitutions might have occurred in the same position. Ideally, one should construct the phylogenetic tree for each family, infer the ancestral sequence for each internal node and then count the substitutions exactly. This is not practicable in most cases and various shortcuts need to be taken.

Several solutions to these problems have been proposed, each resulting in a different set of substitution scores. The first substitution matrices, calculated by Dayhoff and Eck in 1968 [Dayhoff, 1968 #394], was based on the alignment of closely related proteins, so that the ancestral sequence could be deduced and all the amino acid replacements could be considered occuring just once. This model was then extrapolated to account for more distant relationships (we will not discuss here the mathematics of this extrapolation and the underlying evolutionary model [Dayhoff, 1983 #1356], which resulted in the PAM series of substitution matrices (Fig. 4.4). PAM (Percent Accepted Mutation) is a unit of evolutionary divergence of protein sequences, corresponding to one amino acid change per 100 residues.  Thus, for example, the PAM30 matrix is supposed to apply to proteins that differ, on a average, by 0.3 change per aligned residue, whereas PAM250 should reflect evolution of sequences with an average of 2.5 substitutions per position. Accordingly, the former matrix should be employed for constructing alignments of closely related sequences, whereas the latter is useful in database searches aimed at detection of distant relationships. Using an approach similar to that of Dayhoff, combined with rapid algorithms for protein sequence clustering and alignment, Jones, Taylor and Thornton produced the series of the so-called JTT matrices [Jones, 1992 #1325] which are essentially an update of the PAMs.

The PAM and JTT matrices, however, have obvious limitations because of the fact that they have been derived from alignments of closely related sequences and extrapolated to distantly related ones. This extrapolation may not be fully valid because, (i) the underlying evolutionary model might not be adequate, and (ii) the trends that determine sequence divergence of closely related sequences might not apply to the evolution at larger distiances. 

In 1992, Steven and Jorja Henikoff developed a different series of substitution matrices [Henikoff, 1992 #404] that was based on the conserved ungapped alignments of related proteins from the BLOCKS database (see ♦3.2.1).  The use of these alignments offered three important advantages over the alignments used for constructing PAM matrices. First, the BLOCKS collection obviously included a much larger number and, more importantly, a much greater diversity of protein families than the collection that was available to Dayhoff and coworkers in the 70ies. Second, coming from rather distantly related proteins, BLOCKS alignments better reflected the amino acid changes that occur over large phylogenetic distances and thus produced substitution scores that represented sequence divergence in distant homologs directly, rather than through extrapolation. Third, in these distantly related proteins, BLOCKS represent only the most similar regions, for which the alignments were unequivocal (at least in the great majority of cases) and which are likely to best represent the prevailing evolutionary trends. These substitution matrices, named the BLOSUM (= BLOcks SUbstitution Matrix) series, were tailored to particular evolutionary distances by ignoring the sequences that have more than a certain percent identity. In the BLOSUM62 matrix, for example, the substitution scores were derived from the alignments of sequences that had no more than 62% identity, whereas the substitution scores of the BLOSUM45 matrix were calculated from the alignments that contained sequences with no more than 45% identity. Accordingly, BLOSUM matrices with high numbers, such as BLOSUM80, are best suited for comparisons of closely related sequences (in practical terms, it is advisable to use BLOSUM80 for database searches with short sequences for which only highly similar homologs are likely to show statistical significance), whereas low-number BLOSUM matrices, such as BLOSUM45 are better for distant relationships. In addition to the general purpose PAM, JTT and BLOSUM series, some specialized substitution matrices were developed, for example, one for integral membrane proteins [Jones, 1994 #406], but they never achieved comparable recognition.  

Several early studies found the PAM matrices based on empirical data consistently resulted in greater search sensitivity than any of the ab initio matrices (see Doolittle, 1986,??? for an overview). An extensive empirical comparison showed that, (i) BLOSUM matrices conistently outperformed PAMs in BLAST searches and (ii) BLOSUM62 (Fig 4.4), on average, performed best in the series [Henikoff, 1993 #405]; this matrix is currently used as default in most sequence database searches. It is remarkable that so far, throughout the 30 plus year history of amino acid substitution matrices, empirical ones have consistently outperformed those based on theory, either physico-chemical or evolutionary. This is not to say, of course, that theory is powerless in this field, but to point out that, at this time, we do not have a truly adequate theory to describe protein evolution. Clearly, the last word has not been said on amino acid substitution matrices and eventually the BLOSUM series matrices probably will be replaced by new matrices based on greater amounts of higher quality alignment data and more realistic evolutionary models. A recently reported maximum-likelihood model for substitution frequency estimation has already been claimed to describe individual protein families better than the Dayhoff and JTT models [Whelan, 2001 #1326]. It remains to be seen how this and other new matrices behave in large-scale computational experiments on real databases. AAindex, a database of amino acid indices and similarity matrices at the Japanese GenomeNet web site (http://www.genome.ad.jp/dbget/aaindex.html), lists 66 different substitution matrices, ab initio and empirical, and there is no doubt that this list will continue to grow [Kawashima, 2000 #427].
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T  -1  -6  -2  -5  -8  -5  -6  -6  -7  -2 -7  -3  -4  -9  -4  0   7 

W -13  -2  -8 -15 -15 -13 -17 -15  -7 -14 -6 -12 -13  -4 -14 -5 -13  13 

Y  -8 -10  -4 -11  -4 -12  -8 -14  -3  -6 -7  -9 -11   2 -13 -7  -6  -5 10 

V  -2  -8  -8  -8  -6  -7  -6  -5  -6   2 -2  -9  -1  -8  -6 -6  -3 -15 -7  7 

B  -3  -7   6   6 -12  -3   1  -3  -1  -6 -9  -2 -10 -10  -7 -1  -3 -10 -6 -8  6 

Z  -3  -4  -3   1 -14   6   6  -5  -1  -6 -7  -4  -5 -13  -4 -5  -6 -14 -9 -6  0  6 

X  -3  -6  -3  -5  -9  -5  -5  -5  -5  -5 -6  -5  -5  -8  -5 -3  -4 -11 -7 -5 -5 -5 –5 
    A   R   N   D   C   Q   E   G   H   I  L   K   M   F   P  S   T   W  Y  V  B  Z  X
Figure 4.4.  The PAM30 substitution matrix.  The numbers indicate the substitution score for each replacement. The greater the number the lesser the penalty for the given substitution. Note the high penalty for replacing Cys and aromatic amino acids (Phe, Tyr, and Trp) with any other residues and, accordingly, the high reward for conservation of these residues (see the diagonal elements).

A   4  

R  -1   5  

N  -2   0   6  

D  -2  -2   1   6  

C   0  -3  -3  -3   9  

Q  -1   1   0   0  -3   5  

E  -1   0   0   2  -4   2   5  

G   0  -2   0  -1  -3  -2  -2   6  

H  -2   0   1  -1  -3   0   0  -2   8 

I  -1  -3  -3  -3  -1  -3  -3  -4  -3   4  

L  -1  -2  -3  -4  -1  -2  -3  -4  -3   2   4  

K  -1   2   0  -1  -3   1   1  -2  -1  -3  -2   5 

M  -1  -1  -2  -3  -1   0  -2  -3  -2   1   2  -1   5 

F  -2  -3  -3  -3  -2  -3  -3  -3  -1   0   0  -3   0   6 

P  -1  -2  -2  -1  -3  -1  -1  -2  -2  -3  -3  -1  -2  -4   7 

S   1  -1   1   0  -1   0   0   0  -1  -2  -2   0  -1  -2  -1   4 

T   0  -1   0  -1  -1  -1  -1  -2  -2  -1  -1  -1  -1  -2  -1   1   5 

W  -3  -3  -4  -4  -2  -2  -3  -2  -2  -3  -2  -3  -1   1  -4  -3  -2  11 

Y  -2  -2  -2  -3  -2  -1  -2  -3   2  -1  -1  -2  -1   3  -3  -2  -2   2   7  

V   0  -3  -3  -3  -1  -2  -2  -3  -3   3   1  -2   1  -1  -2  -2   0  -3  -1   4 

X   0  -1  -1  -1  -2  -1  -1  -1  -1  -1  -1  -1  -1  -1  -2   0   0  -2  -1  -1  -1 

    A   R   N   D   C   Q   E   G   H   I   L   K   M   F   P   S   T   W   Y   V   X

Figure 4.5.  BLOSUM 62 substitution matrix.  The meaning of the numbers is the same as for PAM30. Note the relatively lower reward for conservation of Cys, Phe, Tyr, and Trp and lower penalties for replacing these amino acids than in the PAM30 matrix. This trend is even stronger in lower series members (e.g. BLOSUM45) because drastic amino acid changes are more likely at larger evolutionary distances.

4.2.2.  Statistics of protein sequence comparison 

It is impossible to explain even the basic principles of statistical analysis of sequence similarities without invoking at least some mathematics. To introduce these concepts in the least painful way, let us consider the same protein sequence (E. coli RpsJ) as above 

Query: 1 MKVRASVKKLCRNCKIVKRDGVIRVICSAEPKHKQRQG 38

and check how many times segments of this sequence of different length are found in the database (we chose fragments starting from the second position in the sequence because nearly every protein in the database starts with a methionine). Not unexpectedly, we find that the larger the fragment, the smaller the number of exact hits in the database:

Table 4.4.  Dependence of the number of hits in database search on the length of the query word. 

	Sequence 
	
	Occurences in the database

	KV
	
	488,559

	KVR
	
	28,592

	KVRA
	
	2,077

	KVRAS
	
	124

	KVRASV
	
	23

	KVRASVK
	
	8

	KVRASVKK
	
	4

	KVRASVKKL
	
	1

	KVRASVKKLC
	
	1


Perhaps somewhat counterintuitively, a 9-mer is already unique. With the decrease in the number of database hits the likelihood that these hits are biologically relevant, i.e. belong to homologs of the query protein, increases. Thus, 13 of the 23 occurrencies of the string KVRASV and all 8 occurrencies of the string KVRASVK are from RpsJ orthologs. 

The number of perfect matches of the given string in the database can be roughly estimated as follows. The probability of matching one amino acid residue 1/20 (assuming equal frequencies of all 20 amino acids in the database; this not being the case, the probability is slightly greater). The probability of matching two residues in a row is then (1/20)2, and the probability of matching n residues is (1/20)n. Given that the protein database currently contains N~2x108 letters, one should expect a string of n letters to be matched approximately Nx(1/20)n times, which is fairly close to the numbers in Table 4.4. 

Searching for perfect matches is the simplest and, in itself, obviously insufficient form of a sequence database search although, as we shall see below, it is important as one of the basic steps in currently used search algorithms. As repeatedly mentioned above, the goal of a search is finding homologs, which can have drastically different sequences such that, in distant homologs, only a small fraction of the amino acid residues may be identical or even similar. Even in close homologs, a region of high similarity is usually flanked by regions of lower similarity like in the following alignment of E. coli RpmJ with its ortholog from Vibrio cholerae:

E. coli RpmJ: 
1 MKVRASVKKLCR---NCKIVKRDGVIRVICSAEPKHKQRQG 

              MKV +S+K       +C+IVKR G + VIC + P+ K  Q

Vibrio VC0879:
1 MKVLSSLKSAKNRHPDCQIVKRRGRLYVICKSNPRFKAVQR 

In this example, the region of highest similarity is in the middle of the alignment, but including the less conserved regions on both sides improves the overall score. Further along the alignment, the similarity almost disappears so that inclision of additional letters into the alignment would not increase the overall score or even decrease it. Such fragments of the alignment of two sequences whose similarity score cannot be improved by adding or trimming any letters (for this approach to work, the expectation of score for random sequences must be negative and the scoring matrices used in database searches are scaled accordingly; see Figs. 4.4 and 4.5) are referred to as high-scoring segment pairs (HSPs). 

So, instead of looking for perfect matches, sequence comparisons programs (both for DNA and proteins) actually search for HSPs.  Once a set of HSPs is found, different programs, such as Smith-Waterman, FASTA, or BLAST, deal with them in different fashions (see below). However, the principal issue that any database search method needs to address is identifying those HSPs are unlikely to occur by chance and, by inference, are likely to belong to homologs and to be biologically relevant. This problem has been solved by Samuel Karlin and Stephen Atschul who showed that maximal HSP scores are distributed in accordance with the extreme value distribution [Karlin, 1990 #453]. It follows that, if the lengths of the query sequence (m) and the database (n) are sufficiently high, the expected number of HSPs with a score of at least S is given by the formula





E = Kmn2-S 









 (1)

Here S is the so-called raw score calculated under a given scoring system, and K and  are natural scaling parameters for the search space size and the scoring system, repsecitvely. Normalizing the score according to the formula:

S’=(S-lnK)/ln2 

              
(2)

gives the bit score, which has a standard unit accepted in information theory and computer science. Then, 

E = mn2-S’ 




 (3) 

and, since it can be shown that the number of random HSPs with score  (S’ is described by Poisson distribution, the probability of finding at least one HSP with bit score (S’ is

P = 1 - e-E   




 (4)

Equation (4) links two commonly used measures of sequence similarity, the probability (P-value) and expectation (E-value). For example, if the score S is such that three HSPs with this score (or greater) are expected to be found by chance, the probability of finding at least one such HSP is (1-e-3) ~ 0.95. By definition, P-values vary from 0 to 1, whereas E-values may be much greater than 1. The BLAST programs (see below) report E-values rather than P-values because E-values of, for example, 5 and 10 are much easier to comprehend than P-values of 0.993 and 0.99995. However, for E < 0.01, P-value and E-value are nearly identical. 

The product mn defines the search space, a critically important parameter of any database search. Equations (1) and (3) codify the intuitively obvious notion that the larger the search space the higher the expectation of finding an HSP with a score greater than any given value. There are two corrolaries of this that might take some getting used to: (i) the same HSP may come out statistically significant in a small database and not significant in a large database; with the natural growth of the database, any given alignment becomes less and less significant (but by no means less important because of that) and (ii) the same HSP may be statistically significant in a small protein (used as a query) and not significant in a large protein. 

Clearly, one can easily decrease the E-value and the P-value associated with the alignment of the given two sequences by lowering n in equation (1), i.e. by searching a smaller database. However, the resulting increase in significance is false, although such a trick can be useful for detecting initial hints of subtle relationships that should be subsequently verified using other approaches. It is the experience of the authors that the simple notion of E(P)-value is often misunderstood and interpreted as if these values applied just to a single pairwise comparison (i.e. if an E-value of 0.001 for an HSP with score S is reported, then, in a database of just a few thousand sequences, one expects to find a score >S by chance). In fact, it is critical to realize that the size of the search space is already factored in these E-values and the reported value corresponds to the database size at the time of search (thus, it is certainly necessary to indicate, in all reports of sequence analysis, what database was searched, and desirably, also on what exact date).

Speaking more philosophically (or futuristically), one could imagine that, should the genomes of all species that inhabit this planet be sequenced, it would become almost impossible to demonstrate statistical significance for any but very close homologs in standard database searches. Thus, other approaches to homology detection are required that counter the problems created by database growth by taking advantage of the simultaneously increasing sequence diversity and, as discussed below, some have already been developed. 

The Karlin-Altschul statistics has been rigorously proven to apply only to sequence alignments that do not contain gaps, whereas statistical theory for the more realistic gapped alignments remains an open problem. However, extensive simulations have shown that these alignment are also described by extreme value distributions to a high precision; therefore, at least for all practical purposes, the same statistical formalism is applicable [Altschul, 1996 #399; Altschul, 1997 #191].

Those looking for a detailed mathematical description of the sequence comparison statistics can find it in the “Further Reading” list at the end of the chapter. A brief explanation of the statistical principles behind the BLAST program, written by Stephen Altshul, can be found on-line at http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html.

4.3. Algorithms for Sequence Alignment and Similarity Search 

4.3.1. The basic alignment concepts and principal algorithms

As discussed in the previous sections, similarity searches aim at identifying the homologs of the given query protein (or nucleotide) sequence among all the protein (or nucleotide) sequences in the database. Even in this general discussion, we repeatedly mentioned and on some occasions showed sequence alignments. An alignment of homologous protein sequences reveals their common features that are ostensibly important for the structure and function of each of these proteins; it also reveals less conserved regions that are less important for the conserved function but might define specificity of each of the homologs. In principle, the only way to identify homologs is by aligning the query sequence against all the sequences in the database (below we will discuss some important heuristics that allow an algorithm to skip sequences that are obviously unrelated to the query), sorting these hits based on the degree of similarity, and assessing their statistical significance that is likely to be indicative of homology. Thus, before considering algorithm and programs used to search sequence databases, it makes sense to briefly discuss alignment methods themselves. 

It is important to make a distinction between a global (i.e. full-length) alignment and a local alignment, which only includes subsets of two sequences. Although, in theory, a global alignment is the best of describing relationships between sequences, in practice, local alignments are of more general use for two reasons. Firstly, it is common that only parts of two proteins are homologous (e.g. they share one conserved domain, whereas other domains are unique). Secondly, on many occasions, only a portion of the sequence is conserved enough to carry a detectable signal, whereas the rest has diverged beyond recognition. Optimal global alignment of two sequences was first realized in the Needleman-Wunsch algorithm, which employs dynamic programming [Needleman, 1970 #1280]. The notion of optimal local alignment (the best possible alignment of two subsequences from the compared sequences) and the corresponding dynamic programming algorithm were introduced by Smith and Waterman [Smith, 1981 #145]. Both of these are O(n2) algorithms, i.e. the time and memory required to generate an optimal alignment are proportional to the product of the lengths of the compared sequences (for convenience, the sequences are assumed to be of equal length n in this notation). Optimal alignment algorithms for multiple sequences have the O(nk) complexity (where k is the number of compared sequences). Such algorithms for k >3 are not feasible on any existing computers, therefore all available methods for multiple sequence alignments produce only approximations and do not guarantee the optimal alignment. It might be useful here to clarify the notion of optimal alignment. 

Algorithms like Needleman-Wunsch and Smith-Waterman guarantee the optimal alignment (global and local, respectively) for any two compared sequences. This optimality is a purely formal notion which means that, given a scoring function, the algorithm outputs the alignment with the highest possible score. This has nothing to with statistical significance of the alignment, which has to be estimated separately (e.g using the Karlin-Altschul statistics as outlined above), let alone biological relevance of the alignment. 

For better or worse, alignment algorithms treat protein or DNA as simple strings of letters without recourse to any specific properties of biological macromolecules. Therefore it might be useful to illustrate the principles of local alignments using a text free of biological context as an example. Below is the text of stanza I and IV of one of the most famous poems of all times; we shall compare them line by line, observing along the way various problems involved in sequence alignment (the alignable regions are shown in bold): 

I

“Once upon a midnight dreary, while I pondered, weak and weary,

Over many a quaint and curious volume of forgotten lore,

While I nodded, nearly napping, suddenly there came a tapping,

As of some one gently rapping, rapping at my chamber door.

"'Tis some visitor," I muttered, "tapping at my chamber door-

Only this, and nothing more."

IV

“Presently my soul grew stronger; hesitating then no longer, 

"Sir," said I, "or Madam, truly your forgiveness I implore; 

But the fact is I was napping, and so gently you came rapping, 

And so faintly you came tapping, tapping at my chamber door, 

That I scarce was sure I heard you"- here I opened wide the door;- 

Darkness there, and nothing more. "

It is easy to see that in the first two lines of the two stanza, the longest common string consists of only five letters, with one mismatch:

...I pondered ... 



          (I) 

...stronger... 
The second lines align better, with two similar blocks separated by spacers of variable lengths, which requires gaps to be introduced in order to combine them in one alignment:

   ...of forgotten--- - ---lore              (II)
 your forgiv-eness I implore 
In the third line, there are common words of seven, four and six letters, again separated by gaps:

... napping sud –  den-ly there came a tapping,    (III)

... napping and so gently you-- came - rapping.

The fourth lines align very well, with long string of near identity at the end:

As of some one gently --- ---- rapping rapping at my chamber door  (IV) 

An d- so-- --f aintly you came tapping tapping at my chamber door  

In contrast, there is no reasonable alignment between the fifth lines, except for the identical word ‘door’. Obviously, however, the fourth line of the second stanza may be aligned not only with the fourth (IV), but also with the fifth line of the first stanza:

...   I muttered tapping at my chamber door (IV’)

... came tapping tapping at my chamber door  
Alignments (IV) and (IV’) can thus be combined to produce a multiple alignment:

...rapping rapping at my chamber door        (IV’’)

...tapping tapping at my chamber door

...------- tapping at my chamber door
Finally, the sixth lines of the two stanza could be aligned at their ends:

    Only  this- and nothing more


(V)

Darkness  there and nothing more
This simple example seems to capture several important issues that emerge in sequence alignment analysis. Firstly, remembering that an optimal alignment can be obtained for any two sequences, we should ask: which alignments actually reflect homology of the respective lines? The alignments III, IV, IV’ (and the derivative IV’’) and V seem to be real beyond reasonable doubt. However, are they really correct? In particular, aligning en-ly/ently in III and ntly/ntly in IV require introducing gaps into both sequences? Is this justified? We cannot answer this simple question without a statistical theory for assessing the significance of an alignment, including a way to introduce some reasonable gap penalties. 

The treatment of gaps is, in fact, one of the hardest and still unresolved problems of alignment analysis. There is no theoretical basis for assigning gap penalties relative to substitution penalties. Deriving these penalties empirically is a much more complicated task than deriving substitution penalties as in PAM and BLOSUM series because, unlike the alignment of residues in highly conserved blocks, the number and positions of gaps in alignments tend to be highly uncertain (see, for example alignment IV: is it correct to place gaps both before and after ‘so’ in the second line?). Thus, gap penalties typically are assigned on the basis of two notions that stem both from the existing understanding of protein structure and from empirical examinations of protein family alignments: (i) deletion or insertion resulting in a gap is much less likely to occur than even the most radical amino acid substitution and should be heavily penalized and (ii) once a deletion (insertion) has occurred in a given position, deletion or insertion of additional residues (gap extension) becomes much more likely. Therefore, most alignment methods calculate the gap penalty g as a linear function:

g=a+bx,     a>>b 




 (5)

where a is the gap opening penalty, b is the gap extension penalty and x is the length of the gap. Typically, a=10 and b=1 is a reasonable choice of gap penalties to be used in conjunction with the BLOSUM62 matrix. Using these values, the reader should be able to find out whether or not gaps should have been introduced in alignment III and IV about. In principle, objective gap penalties could be produced by analysis of distributions of gaps in structural alignments and such a study suggested using convex functions for gap penalties [Benner, 1993 #1327]. However, this makes alignment algorithms much costlier computationally and the practical advantages remain uncertain, so linear gap penalties are still universally employed. 

The feasibility of alignments (IV) and (IV’) creates the problem of choice: which of these is the correct alignment? Alignment (IV) wins because it clearly has a longer conserved region. What is then the origin of line 5 in the first stanza and, accordingly, of alignment  (IV’)? It is not too difficult to figure out that this is a repeat, a result of a duplication of line 4 (this is what we should conclude given that line 4 is more similar to the homologous line in the second stanza). Such duplications are common in protein sequences, too, and often create major problems for alignment methods. 

We concluded that lines 3, 4 and 6 in each stanza of “Raven” are homologous, i.e. evolved from common ancestors with some subsequent divergence. In this case, the conclusion is also corroborated by the fact that we recognize the English words in these lines and see that they are indeed nearly the same and convey similar meanings, albeit differing in nuances. What about alignments (I) and (II)? The content here tells us that no homology is involved, even though alignment (II) looks “believable”. importantly, however, it would not have been recognized as statistically significant in a search of any sizable database, such as, for example, the “Unabridged Edgar Allan Poe”  (Ref.). Is this similarity purely coincidental, then? Obviously, it is not. This is a case of convergence, a phenomenon whose role in molecular evolution we already had a chance to discuss in Chapter II. Of course, in this case, the source of convergence is known: Poe deliberately introduced these similarities for the sake of rhyme and alliteration. Such a force, to our knowledge, does not exist in molecular evolution, but analogous functional constraints act as its less efficient substitute. 

Most of the existing alignment methods utilize modifications of the Smith-Waterman algorithm. Although it is not our goal here to discuss the latest developments in sequence alignment methods, the reader has to keep in mind that this remains an active research field with a variety of algorithms and tools that at least claim improvements over the traditional ones appearing at a high rate. Just one recent example is BALSA, a Bayesian local alignment algorithm that explores series of substitution matrices and gap penalty values and assesses their posterior probabilities, thus overcoming some of the shortcomings of Smith-Waterman algorithm [Webb, 2002 #1328]. 

Pairwise alignment methods are important largely in the context of a database search (♦4.???). For analysis of individual protein families, multiple alignment methods are critical. We believe that anyone dealing with protein family analysis routinely or even occasionally will subscribe to the opinion that so far no one has figured out the best way to do it or even a particularly good way to it. As indicated above, optimal alignment of more than 3 sequence is not feasible in the foreseeable future, so all available methods are approximations. The main principle underlying popular algorithms is hierarchical clustering that roughly approximates the phylogenetic tree and guides the alignment (this natural idea was first introduced by Feng and Doolittle [Feng, 1987 #1329]). The sequences are first compared by a fast method (e.g. FASTA, see below) and clustered by similarity scores to produce a guide tree. Sequences are then aligned step-by-step in a bottom-up succession, starting from terminal clusters in the tree and proceeding to the internal nodes until the root is reached. Each alignment is fixed once made and treated essentially as a sequence with a modification of  dynamic programming. Thus, the hierarchical algorithms essentially reduce the O(nk) multiple alignment problem to a series of O(n2) problems, which makes the algorithm feasible but potentially at the price of alignment quality. The hierarchical algorithm attempt to minimize this problem by starting with most similar sequence where the likelihood of incorrect alignment is minimal, in the hope that the increased weight of correctly aligned positions will preclude errors even in the subsequent steps. The most commonly used methods of hierarchical multiple alignment is Clustal, which is currently used in the ClustalW or ClustalX implementations [Thompson, 1994 #211; Jeanmougin, 1998 #1331]. Clustal is fast and tends to produce reasonable alignments even for protein families with limited sequence conservation provided they do not differ in length too much. A combination of length differences and low sequence conservation tends to result in gross distortions of the alignment. The T-Coffee program is a modification of Clustal that incorporates heuristics that partially solve these problems [Notredame, 2000 #1330].

4.3.2. Sequence database search algorithms 

4.3.2.1. Smith-Waterman 

Any pairwise sequence alignment method in principle can be used for database search in a straightforward manner. All that needs to be done is to construct alignments of the query with each sequence in the database, one by one, rank the results by the level of similarity and estimate statistical significance. 

The classic Smith-Waterman algorithm is a natural choice for such an application and it has been implemented in several database search programs, the most popular one being SSEARCH written by William Pearson and distributed as part of the FASTA package [Pearson, 2000 #1332]. It is currently available on numerous servers around the world, and a good description can be found on-line at http://www.sacs.ucsf.edu/Documentation/gcghelp/ssearch.html. The major problem preventing SSEARCH and other implementations of Smith-Waterman algorithm from becoming the standard choice for routine database searches is the computational cost, which is orders of magnitude greater than it is for the heuristic FASTA and BLAST methods (see below). Since extensive comparisons of the performance of these methods in detecting structurally relevant relationships between proteins failed to show a decisive advantage of SSEARCH [Brenner, 1998 #1333], the fast methods dominate the field. Nevertheless, on a case by case basis, it is certainly advisable to revert to full Smith-Waterman search when other methods do not reveal a satisfactory picture of homologous relationship for a protein of interest. On a purely empirical and even personal note, the authors have not had much success with this, but undoubtedly, even rare findings may be important. A modified, much faster version of the Smith-Waterman algorithm has been implemented in the MPSRCH program, which is available at the EBI web site (http://www.ebi.ac.uk/MPsrch).

4.3.2.2  FASTA 

FASTA, introduced in 1988 by William Pearson and David Lipman [Pearson, 1988 #350], was the first database search program that achieved search sensitivity comparable to that of Smith-Waterman, but was much faster. FASTA looks for local alignments by scanning the sequence for short matches called "words"; word search is extremely fast. The idea is that almost any pair of homologous sequences is expected to have at least one short word in common. Using this assumption, the great majority of the sequences in the database that do not have common words with the query can be skipped with minimal waste of computer time. The sensitivity and speed of the database search by FASTA are inversely related and depend on the "k-tuple" variable, which specifies the word; typically, searches are run with k=3, but if high sensitivity at the expense of speed is desired, one may switch to k=2. 

Subsequently, Pearson introduced several improvements to the FASTA algorithm [Pearson, 1988 #350; Pearson, 1996 #146] that resulted in FASTA3 program, which is available on the EBI server at http://www2.ebi.ac.uk/fasta3.  

4.3.2.3.  BLAST

Basic Local Alignment Search Tool (BLAST®) is the most widely used method for sequence similarity search; it is also the fastest one and the only one that relies on a complete, rigorous statistical theory [Altschul, 1990 #192; Altschul, 1994 #351; Altschul, 1996 #399; Altschul, 1997 #191]. 

Like FASTA and in contrast to the Smith-Waterman algorithm, BLAST employs the word search heuristics to quickly eliminate irrelevant sequences, which greatly reduces the search time.  The program initially searches for a word of a given length W (usually 3 amino acids or 11 nucleotides, see ♦3.4.2) that scores at least T when compared to the query using a given substitution matrix. Word hits are then extended in either direction in an attempt to generate an alignment with a score exceeding the threshold of "S".  The "W" and "T" parameters dictate the speed and sensitivity of the search, which can thus be varied by the user. 

The original version of BLAST (known as BLAST 1.4) produced only ungapped alignments for which rigorous statistical theory is available. Although this program performed well for many practical purposes, it repeatedly demonstrated lower sensitivity than the Smith-Waterman algorithm and the FASTA program, at least when run with the default parameters [Pearson, 1996 #146].  The new generation of BLAST makes alignments with gaps, for which extensive simulation have demonstrated the same statistical properties as proved for ungapped alignments (see above).

The BLAST suite of programs is available for searching at the NCBI web site (http://www.ncbi.nlm.nih.gov/BLAST) and many other web sites around the world. It has three programs that work with nucleotide queries and two programs that use protein queries (Table 4.7). The BLASTX, TBLASTN and TBLASTX programs are used when either the query or the database or both are uncharacterized sequences and the location of protein-coding regions is not known. These programs translate the uncharacterized sequence in all 6 possible frames and run a protein sequence comparison analogous to that in BLASTP. 

Table 4.7. Use of BLAST programs for database searches. 
	Program
	Query sequence 
	Query type used for the database search
	Database used for the search

	BLASTN
	DNA
	DNA
	DNA

	BLASTP
	Protein
	Protein
	Protein

	BLASTX
	DNA 
	Translated DNA 
	Protein

	TBLASTN
	Protein
	Protein
	Translated DNA 

	TBLASTX
	DNA 
	Translated DNA 
	Translated DNA 


A version of gapped BLAST with a slightly different statistical model, which in some cases may lead to a greater search sensitivity, known as WU-BLAST, is supported by Warren Gish at Washigton University (http://blast.wustl.edu/).  

Recently, a version of BLAST for comparing two nucleotide or protein sequences, BLAST2sequences, (http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html) [Tatusova, 1999 #210] has been added to the BLAST suite.  In contrast to Lalign, it uses BLAST search tool to find similar regions in the analyzed sequences. 

Because of its speed, high selectivity and flexibility, BLAST is the first choice program in any situation when a sequence similarity search is required and, importantly, this method is used most often as the basis for genome annotation. Therefore we consider the practical aspects of this method in some detail in Section 4.2???. Before that, however, we need to introduce some additional concepts that are critical for protein sequence analysis.

4.3.3.  Protein sequence complexity. Compositional bias in proteins

The existence of a robust statistical theory of sequence comparison, in principle, should allow one to easily sort search results by statistically significance and accordingly assign a level of confidence to any homology identification. However, a major aspect of protein molecule organization substantially complicates database search interpretation and  may lead to gross errors in sequence analysis. Many proteins, especially in eukaryotes, contain low (compositional) complexity regions, where the distribution of amino acid residues is non-random, i.e. deviates from the standard statistical model [Wootton, 1994 #353; Wootton, 1996 #352].  Some of these regions have biased amino acid composition, e.g., rich in glycine or proline, or in acidic, or basic amino acid residues. The ultimate form of low complexity is, of course, a homopolymer, such as a Q-linker [Wootton, 1989 #1334]. Other low-complexity sequences have a certain amino acid periodicity, sometimes subtle, such as, for example, in coiled-coil and other non-globular proteins (e.g., collagen or keratin). 

The notion of compositional complexity was encapsulated in the SEG algorithm and the corresponding program, which partitions protein sequences into segments of low and high (normal) complexity [Wootton, 1996 #352]. An important finding made by John Wootton is that low complexity sequences correspond to non-globular portions of proteins [Wootton, 1994 #353]. In other words,  a certain minimal level of complexity is required for a sequence to fold into a globular structure. Low-complexity regions in proteins, although devoid of enzymatic activity, have important biological functions, most often promoting protein-protein interactions or cellular adhesion to various surfaces and to each other. 

In a detailed empirical study, a set of  parameters of the SEG program was identified that allowed accurate partitioning of a protein sequence into predicted globular and non-globular parts. The mastermind protein of Drosophila melanogaster is a component of Notch-dependent signaling pathway and plays an important role in the development of the nervous system of the fruit fly [Smoller, 1990 #527; Schuldt, 1999 #525]. In spite of its central biological function, this protein consists mostly of stretches of only three amino acid residues, Gln, Asn, and Gly and is predicted to have a fully non-globular structure (Fig. 4.  ). Recently discovered human homologs of mastermind are also involved in Notch-dependent transcriptional regulation  and similarly appear to be non-globular [Wu, 2000 #523; Kitagawa, 2001 #522]. 
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Figure 4.7???.  Sequence of the Drosophila mastermind protein: partitioning into predicted globular and non-globular regions. 

The  SEG program was run with the parameters optimized for detection of non-globular regions: window length 45, trigger complexity 3.4, extension complexity 3.7. 

Low complexity regions represent a major problem for database searches. Since the  parameter of equation (1) above is calculated for the entire database, Karlin-Altschul statistics breaks down when the composition of the query or a database sequence or both significantly deviates from the average composition of the database. The result is that low-complexity regions with similar composition (e.g. acidic or basic) often produce “statistically significant” alignments that have nothing to with homology and are completely irrelevant. The SEG program can be used to overcome this problem in a somewhat crude manner: the query sequence, the database or both can be partitioned into normal complexity and low complexity regions and the latter are masked (i.e. amino acid symbols are replaced with the corresponding number of X’s). For the purpose of database search, such filtering is usually done using short windows so that only the segments with most biased composition are masked. Low-complexity filtering has been indispensable for making database search methods, in particular BLAST, into reliable tools. Without masking low-complexity regions, the false results would have been produced for a substantial fraction of proteins, especially eukaryotic ones (an early estimate held that long regions of low complexity were present in XX% of the proteins in the SWISSPROT database). These false results would have badly polluted any large-scale database search and the respective proteins would have been refractory to any meaningful sequence analysis. For these reasons, for several years, SEG filtering had been used as the default for BLAST searches to mask low complexity segments in the query sequence. However, this procedure is not without its drawbacks. Not all low-complexity sequences are captured and false positives still occur in database searches. The opposite problem also hampers database searches for some proteins: when short low-complexity sequences are pats of conserved regions, statistical significance of an alignment may be underestimated, sometimes grossly. Below, in section 4... we will have the opportunity to see how filtering works. 

In a recent work of Alejandro Schäffer and colleagues, a different, less ad hoc approach for dealing with compositionally biased sequences was introduced [Schaffer, 2001 #450]. This method, called composition-based statistics, recalculates the l parameter and, accordingly, E values (see equation (1) above) for each query and each database sequence, thus correcting the inordinately low (“significant”) E-values for sequences with similarly biased amino acid composition.  This improves the accuracy of the reported E-values and eliminates most false positives. Compositionally-based statistics is now used as default on the web BLAST pages.  Below, in section 4.xxx, we will discuss the effect of this procedure on database search outcome in greater detail and using specific examples. 

4.3.4. Motifs, domains and profiles

4.3.4.1. The notion of protein sequence motifs and pattern-based methods for motif detection

Let us ask a very general question: what distinguishes biologically important sequence similarities from spurious ones? Looking at  just one alignment of the query and its database hit showing more or less scattered identical and similar residues as in this, already familiar alignment:

E. coli RpmJ: 
1 MKVRASVKKLCR---NCKIVKRDGVIRVICSAEPKHKQRQG 

              MKV +S+K       +C+IVKR G + VIC + P+ K  Q  

Vibrio VC0879:   1 MKVLSSLKSAKNRHPDCQIVKRRGRLYVICKSNPRFKAVQR 

it may be hard to tell one from the other. However, as soon as we align more homologous sequence, particularly from distantly related organisms, as done  for L36 in Fig. 2.1, we will have a clue as to the nature of the distinction. Note two pairs of residues that are conserved in the great majority of L36 sequences: Cx(2)Cx(12)Cx(4-5)H [here x(n) indicates n residues whose identity does not concern us]. Those familiar with protein domains might have already noticed that this conserved pattern resembles the pattern of metal-coordinating residues in the so-called Zn-fingers and Zn-ribbons, extremely widespread metal-binding domains that mediate proten-nucleic-acid and protein-protein interactions. Indeed, L36 has been shown to bind Zn2+ and those very cysteines and histidines are involved (PMID: 10656825; PMID: 11168885). Such constellation of conserved amino acid residues associated with a particular function is called a sequence motif. Typically, motifs are confined to short stretches of protein sequences, usually spanning 10 to 30 amino acid residues. The notion of a motif, arguably one of the most important concepts in computational biology, was first explicitly introduced by Russell Doolittle in 1981. Fittingly and, to our knowledge, quite independently, next year John Walker and colleagues (PMID: 6329717) described what may be considered the most prominent sequence motif in the entire protein universe, the phosphate-binding site of  a vast class of ATP/GTP-utilizing enzymes, which subsequently has been named P-loop (PMID: 2126155). Discovery of sequence motifs characteristic of a vast variety of enzymatic and binding activities of proteins proceeded first at an increasing and then, apparently, at a steady rate (PMID: 8804823), and the motifs, in the form of amino acid patterns, were swiftly incorporated by Amos Bairoch in the PROSITE database (3….)
The P-loop is usually presented as the following pattern of conserved amino acid residues:




[GA]x(4)GK[ST]

By running this pattern against the entire protein sequence database using, for example, the FPAT program available through the ExPASy server    program or any other pattern-matching program (even the grep command under Unix will do), one immediately realizes just how general and how useful this pattern is. Indeed, nowadays, such a search retrieves the sequences of thousands of experimentally characterized ATPases and GTPases and their close homologs. However, only about one half of the retrieved sequences are known or predicted NTPases of the P-loop class  (see 6.  ), whereas the rest are false-positives (EVK, unpublished observations). This is not surprising given the small number of residues in this pattern, which results in the probability of chance occurrence about 

(1/10)2*(1/20)2 =2.5*10-5 (not that there are two strictly conserved residues in this pattern and two positions where one of two residues is allowed; this is an approximate estimate because the actual amino acid frequencies ar enot taken into account, but it is close enough). With the database size of about 3.2*108 residues, the expected number of matches is about  8,000! 

____________________________________________________________________

Thus, this and many other similar patterns, although they include the best conserved amino acid residues of important motifs, in themselves are insufficiently selective to be good diagnostic tools. The specificity of a pattern can be increased by taking into account adjacent residues that tend to have conserved properties. In particular, for the P-loop pattern, it can be required that there should be at least three bulky, hydrophobic residues among the five residues upstream of the first glycine (structurally, this is a hydrophobic -strand in ATPases and GTPases). This will greatly reduce the number of false-positives in a database search (let us note parenthetically that this requires a more sophisticated search method as implemented, for example, in the GREF program of the SEALS package). Still, this does not solve the problem of motif identification. Figure 4.8 shows the alignment of a small set of selected P-loops that were chosen for their sequence diversity.

      RecB_Ecoli      ERLIEASAGTGKTFTIAALYLRLL

      SbcC_Ecoli      LFAITGPTGAGKTTLLDAICLALY

      MutS_Ecoli      MLIITGPNMGGKSTYMRQTALIAL

      Adk_Ecoli       RIILLGAPGAGKGTQAQFIMEKYG

      MCM2_HUMAN      NVLLCGDPGTAKSQFLKYIEKVSS

      UvsX_T4         LLILAGPSKSFKSNFGLTMVSSYM

Fig. 4.8. Alignment of P-loops from diverse ATPases and GTPases.

We can see that not even a single amino is conserved in all these sequences although we are confident that they all represent the same motif that has a conserved function  and, in all likelihood, is monophyletic, i.e. evolved only once. We illustrated the lack of strict conservation of amino acid residues in an enzymatic motif; this trend is even more pronounced in motifs associated with macromolecular interactions in which invariant residues are exception rather than norm. Pattern search remains a useful first-approximation method for motif identification, especially since a rich pattern collection, such as PROSITE (3…), can be searched using a rapid and straightforward program like SCANPROSITE

 (http://ca.expasy.org/tools/scnpsite.html). However, by the very nature of the approach, patterns are either insufficiently selective or too specific and, accordingly, are not adequate descriptions of motifs. 

The way to more properly capture the information contained in sequence motifs is to represent them as amino acid frequency profiles, which incorporate the frequencies of each of the 20 amino acid residues in each position of the motif. Even in the absence of invariant residues, non-randomness of a motif may be quite obvious in a profile representation (Fig. 4.9). Utilization of frequency profiles for database searches had a profound effect on the quality and depth of sequence and structure analysis; the principles and methods that made this possible are discussed in the next section.
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Figure 4.9.  Profile representation of a conserved sequence motif and the corresponding 3D structure of the DNA-binding AT-hook domain (From ref.[Aravind, 1998 #648]).  The pictorial form of the profile was produced using the sequence Logo method.

4.3.4.2. Protein domains, motifs, profiles, position-specific scoring matrices and iterative methods for database search


Sequence motifs are extremely convenient descriptors of conserved, functionally important short portions of proteins. However, motifs are not the natural units of protein structure and evolution. Such distinct units are protein domains. In structural biology, domains are defined as structurally compact, independently folding parts of protein molecules. In comparative genomics and sequence analysis in general, the central, “atomic” objects are parts of proteins that have distinct evolutionary trajectories, i.e. occur either as stand-alone proteins or as parts of variable multidomain architectures (hereinafter we refer to the linear order of domains in protein sequences as  domain architecture), but are never split into parts. Very often, probably in the majority of cases, such units of protein evolution exactly correspond to structural domains. However, in some groups of proteins, an evolutionary unit may consist of two or more domains. For example, from a purely structural viewpoint, trypsin-like proteases have two domains. However, at least so far, separation of these domains has not been observed, and therefore, they should be treated as a single evolutionary unit. It might be desirable to propose a special name for these units of protein evolution, but, to our knowledge, this has not been done and, in comparative-genomic literature, including this book, they are commonly referred to as domains. On rare occasions, a domain consists of a single motif, as in the case of AT-hooks mentioned above. However, much more often, domains are relatively large, comprising 100 to 300 amino acid residues and including two or more distinct motifs. Motifs are highly conserved patches in multiple alignments of domains  that tend to be separated by regions of less pronounced sequence conservation and often of variable length (Fig.  4.10A); in other words, motifs may be conceptualized (and visualized) as peaks on sequence conservation profiles. In the 3D structure of most domains, the distinct motifs are juxtaposed and function together, which explains their correlated conservation. Figure 4.10B illustrates the juxtaposition of motifs that center around the two catalytic residues in the alignment of the catalytic domain of caspase-related proteases from Fig. 4.10A. 


The notion of protein motifs has been employed directly in algorithms that construct multiple sequence alignments as a chain of motifs separated by unaligned regions. The first of such methods, Multiple Alignment Construction and Analysis Workbench (MACAW), originally used a BLAST-like method for approximately detecting conserved sequence blocks (motifs) and then allowed the user to determine whether or not inclusion of additional alignment columns increased the significance of the block alignment. MACAW is a very convenient, accurate and flexible alignment tool; however, the algorithm is O(nk) and, accordingly, becomes prohibitively computationally expensive for a large number of sequences (PMID: 2006136). MACAW is an interactive tool that embodies the important notion that completely automatic methods are unlikely to capture all important motif in cases of subtle sequence conservation, particularly in protein that substantially differ in length. For many occasions, it remains the method of choice when careful alignment   analysis is required although, in the current situation of explosive growth of sequence data, the computational cost severely limits MACAW’s utility. Subsequently, Charles Lawrence, Andrew Neuwald and coworkers adapted the Gibbs sampling strategy for motif detection and developed the powerful (if not necessarily user-friendly) PROBE method that allows delineation of multiple, subtle motifs in large sets of sequences [Lawrence, 1993 #766; Neuwald, 1995 #765; Neuwald, 1997 #764] (http://bayesweb.wadsworth.org/gibbs/gibbs.html). Importantly, Gibbs sampler is an O(n) algorithm, which allows analysis of large numbers of sequences. Gibbs sampling has been incorporated into MACAW as one of the methods for conserved block detection. In principle, this should enable MACAW to efficiently align numerous sequences. In practice, the authors find it problematic to identify relevant motifs among he numerous blocks detected by Gibbs sampler.


Arguably, the most important methodological advance based on the concepts of domains and motifs was the development of position-specific weight matrices (PSSMs) and their use in database searches as an incomparably more powerful substitute for regular matrices, such as BLOSUMs and PAMs. A PSSM is a rectangular table, which consists of n columns (n is the number of positions in the multiple alignment for which the PSSM is made) and 20 rows and contains, in each cell, the score (weight) for the given amino acid in the given position of the multiple alignment. In the simplest case, this score can be just the frequency of the amino acid in the given position. It is easy to realize, however, that, on most occasions, residue frequencies taken from any given alignment are unlikely to adequately describe the respective domain family. Firstly, we certainly never know the full range of family members, and moreover, there is no evidence that we have a representative set. Therefore, if a residue is missing in a particular column, this does not justify a 0 score in a PSSM. In fact, a PSSM never includes a score of exactly 0, although scores for some residues might be extremely low and rounding sometimes may result in 0 values. Instead, a finite score is assigned to the missing residue using so-called regularizers, i.e. various mathematical techniques that strive to derive the correct distribution of amino acids for a given position on the basis of a limited sample (PMID: 7991589 PMID: 890236 PMID: 7584436). It is easy to realize that the score given to a missing residue depends on two factors: the distribution actually found in the sample of available superfamily members and the size of the sample. Clearly, if a set of 1,000 diverse sequences invariably contains, for example, a serine residue in a particular position, the probability of finding any other residue in this position is extremely low. Nevertheless, threonine, as a residue that is structurally close to serine and, according to substitution matrices like BLOSUMs and PAMs, is often exchangeable with serine in proteins, certainly should receive a higher score than, say, lysine. One, of course, could argue that an invariant serine is most likely to be part of a catalytic center of an enzyme and as such is more likely to be replaced by cysteine than by threonine (such replacements in enzymes, e.g. proteases and acyltransferases, are well documented, e.g.  PMID: 2645167 PMID: 10404588). This level of sophistication seems to be beyond the capabilities of current automatic methods for PSSM generation, although, in principle, a PSSM for a particular   domain could be tailored manually. Another aspect of PSSM construction that requires formal treatment beyond calculating and regularizing amino acid residue scores stems from the fact that many protein families that available to us are enriched with closely related sequences (this may be the result of a genuine proliferation of a particular subset of a family or of sequencing bias). Obviously, an overrepresented subfamily will sway the entire PSSMs toward detection of additional closely related sequences and hamper the performance. To overcome this problem, different weighting schemes are applied to PSSMs downweigh closely related sequences and increase the contribution of diverse ones. Figure 4.11A shows a PSSM of raw frequencies for the alignment of P-loop motifs from Fig. 4.8, and Fig. 4.11B shows the same PSSM after regularization using the methods associated with the PSI-BLAST program (see 4.    ); note the numerous 0 values in the first but not in the second PSSM. Optimal PSSM construction remains an important problem in sequence analysis and even small improvements have the potential of significant enhancing the power of database search methods. Some of the recent developments that we do not have the opportunity to discuss in detail here seem to hold considerable promise (PMID: 11911793 PMID: 11790846). Once a PSSM is constructed, using it in a database search is straightforward and not particularly different from using a single query sequence combined with a regular substitution matrix, e.g. BLOSUM62. The usual database search methods, such as BLAST, can work equally well with a PSSM and the same statistics applies.


The notion of a PSSM and its use for detecting weak sequence similarities was first introduced by Michael Gribskov, Andrew McLachlan and David Eisenberg in 1987 (PMID: 3474607). However, their method was initially of limited utility because it depended on a pre-made multiple sequence alignment and consequently could not be used with the speed and ease comparable to those of using FASTA or BLAST. An important additional step was combining the use of PSSMs with iterative search strategy. To our knowledge, this was first done by Gribskov (PMID: 1383091). Under this approach, after the first run of a PSSM-based similarity search against a sequence database, newly detected sequences (with the similarity to PSSM above a certain cut-off) are added to the alignment, the PSSM is rebuilt and the cycle is repeated until no new members of the family are detected. This approach was implemented in a completely automated fashion in the Motif Search Tool (MosT) program that also included a rigorous statistical method for evaluating resulting similarities, but only worked with ungapped alignment blocks (PMID: 7991589). 


A decisive breakthrough in the evolution of PSSM-based methods for database search was the development of the Position-Specific Iterating (PSI)-BLAST program [Altschul, 1997 #191]. This program first performs a regular BLAST search of a protein query against a protein database. It then uses all the hits with scores greater than a certain cut-off to generate a multiple alignment and create a PSSM, which is used for the second search iteration. The search goes on until convergence or for a desired number of iterations. Obviously, the first PSI-BLAST iteration must employ a regular substitution matrix, such as BLOSUM62, to calculate HASP scores. For the subsequent iteration, the PSSM regularization procedure was designed in such a way that the contribution of the initial matrix to the position-specific scores decreases, whereas the contribution of the actual amino acid frequencies in the alignment increases with the growth of the number of retrieved sequences. PSI-BLAST also employs a simple sequence weighting  scheme (PMID: 7966282), which is applied for PSSM construction at each iteration. Since its appearance in 1997, PSI-BLAST has become the most common method for in-depth protein sequence  analysis. The method owes its success to its high speed (each iteration takes only slightly longer than a regular BLAST run, the ease of use (no additional steps are required, the search starts with a single sequence, and alignments and PSSMs are constructed automatically on the fly), and high reliability, especially when composition-based statistics is invoked. The practical aspects of using PSI-BLAST are considered at some length in Section 4.3.5. 

Hidden Markov Models (HMMs) of multiple sequence alignments are a popular alternative to PSSMs (PMID: 8302831; PMID: 8107089; [Durbin, 1998 #646] PMID: 11465028. HMMs can be trained on unaligned sequences or pre-made multiple alignments and, similarly to PSI-BLAST, can be iteratively run against a database in an automatic regime. A variety of HMM-based search programs are included in the HMMer2 package([http://hmmer.wustl.edu [Eddy, 1996 #709); Sean Eddy's web site displays a recommendation to pronounce the name of this package "hammer" as in: “a more precise mining tool than a BLAST”). HMM search is slower than PSI-BLAST, but there have been reports of greater sensitivity of HMMs (e.g. PMID: 9837738). In the extensive, albeit anecdotal experience of the authors, the results of protein superfamily analysis using PSI-BLAST (with a few “tricks” discussed in 4.3.5) are remarkably similar. 


The availability of techniques for constructing models of protein families and using them in database searches naturally leads to a vision of the future of protein sequence analysis. The methods discussed above, such as PSI-BLAST and HMMer, start with a protein sequence and gradually build a model that allows detection of homologs with low sequence similarity to the query. Clearly, this approach can be reversed such that a sequence query is run against a pre-made collection of  protein family models. In principle, if models were developed for all protein families, the problem of classifying a new protein sequence would have been essentially solved. In addition to family classification, regular database search like BLAST also provide information on the most closely related homologs of the query, thus giving an indication of its evolutionary affinity. In itself, a search of a library of family models does not yield such information, but an extension of this approach is easily imaginable whereby a protein sequence, after being assigned to a family through PSSM and HMM search, is then fit into a phylogenetic tree. Such a system seems to have the potential of largely replacing current methods with an approach that is both much faster and more informative. Given the explosive growth of sequence databases, transition to searching databases of protein family models as the primary sequence analysis method seems inevitable in a relatively near future. Only for discovering new domains will it be necessary to revert to searching the entire database, and since the protein universe is finite, these occasions are going to be increasingly rare.

Presently, sequence analysis has not reached such an advanced stage, but searches against large, albeit far from complete, libraries of domain-specific PSSMs and HMMs have already become extremely useful approaches in sequence analysis. SMART and CDD, which were introduced above in (3.    ), are the principal tools of this type. SMART performs searches against HMMs generated from curated alignments of a variety of proteins domains, primarily those that are involved in different forms of signaling. The CD server compares a query sequence to the PSSM collection in the CDD (see 2.   ) using the Reversed Position-Specific (RPS)-BLAST program. Algorithmically, RPS-BLAST is similar to BLAST, with minor modifications; Karlin-Altschul statistics applies to E-value calculation for this method. RPS-BLAST searches the library of PSSMs derived from CDD, finding single- or double-word hits and then performing an ungapped extension on these candidate matches. If a sufficiently high-scoring ungapped alignment is produced, a gapped extension is performed and the alignments with E-values below the cut-off are reported. Since the search space is equal to nm  where n is the length of the query and m is the total length of the PSSMs in the database (which, at the time of writing, contains ~5,000 PSSMs), RPS-BLAST is ~100 times faster than regular BLAST. 

4. 3.5. The practical issues: how to get the most out of BLAST 

BLAST in all its different flavors remains by far the most widely used sequence comparison program. For this reason and also given extensive personal experience of using BLAST for a variety of projects, we describe the practical aspects of using BLAST in greater detail.  Some of this information and additional details on BLAST usage available online at the NCBI web site as BLAST tutorial (http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information.html). A simple description of the statistical foundations of BLAST, written by Stephen Altshul, is available on the NCBI web site as BLAST course (http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html). 

4.3.5.1. Setting up the BLAST search

The BLAST web site has been recently redesigned in order to simplify the selection of the appropriate BLAST program to perform the desired database search.  The user only needs to select the type of the query (nucleotide or protein sequence) and the type of the database (protein or nucleotide). These selections automatically define which of the BLAST programs is used for the given search. The discussion below deals primarily with BLASTP, but all the same considerations apply to BLASTX, TBLASTN and TBLASTX (used only in exceptional cases). 

Selecting a subsequence and a database


The default is to search with the entire query sequence. On many occasions, however, it is advantageous to use as the query only a portion of a protein sequence, e.g. one domain of a multidomain protein. To this end, one may either indicate the range of the amino acid position to be used as the query or simply paste the fragment of interest into the query window. 

NCBI, EBI, and other centers offer the users a wide variety of nucleotide and protein databases for various searches. For example, instead of the non-redundant (nr) database, which is used as default, Swissprot, Month (subset of the nr database contaning only the sequences added to GenPept in the last 30 days), or pdb (sequences of the proteins whose structures are present in the PDB (see ♦3.4). Furthermore, a recently implemented option of the NCBI BLAST allows one to limit the BLAST search by a Entrez query and/or a taxonomy tree node (see below). This option provides for setting up an infinite variety of special-purpose searches, saves a large amount of computer and human time and leads to an increase of search sensitivity because of the reduced search space (this, of course has to be remembered when E-values are interpreted). For example, if one needs to compare a query protein only to the two-component regulation systems in Cyanobacteria (this would usually happen that it is known that the protein in question is a previously undetected histidine kinase from this group of organisms), the search can be easily adapted for this particular purpose by indicating “Cyanobacteria” in the taxonomy window and “histidine kinase” in the Entrez window (Fig. 4.12). Of course, this needs to be done with caution because it is likely that not all histidine kinases that are actually encoded in the cyanobacterial genomes have been annotated as such. Therefore it might be a better idea to search all cyanobacterial proteins, which is still many-fold faster than searching the entire nr database. We find the ability to limit the search space using taxonomic criteria to be an extremely useful feature of BLAST, given the current rapid growth of sequence databases. Another useful way to limit the search space is to include the expression ‘srcdb_refseq[PROP]’ in the ‘Limit results by Entez query’ window. This will limit the search to NCBI’s RefSeq database (3.   ), thus preserving most of the sequence diversity, while avoiding redundancy.
Choosing BLAST parameters 

Composition-based statistics and filtering

As noted above, low complexity sequences (e.g., acidic-, basic- or proline-rich regions) often produce spurious database hits in non-homologous proteins (see ♦2.3.1.3). Currently, this problem is addressed by using composition-based statistics (see   ) as the default in NCBI BLAST; filtering with SEG is available as an option, but is turned off by default. As shown in large scale tests [Schaffer, 2001 #450] and confirmed by our extensive experience, composition-based statistics eliminates spurious hits for all but most severe cases of low complexity (we will see the effects of composition-based statistics on BLAST outputs shortly). We should note that these new developments made explicit low complexity filtering largely (not completely) irrelevant for the purpose of routine database searches, but not for exploration of protein structure. Methods like SEG remain important tools for delineating probable globular domains and in that capacity may still be useful for searches, e.g. when a predicted globular domain is used a query. Using composition-based statistics is the only feasible choice for any large scale, particularly automated BLAST searches. However, the same tests have shown that, for some queries, this statistical procedure resulted in artificially high (not significant) E-values. Therefore, when a particular protein is explored in detail, it is advisable to additionally try a search with composition-based statistics turned off. Experienced practitioners might vary their first choice depending on the features of the query. Thus, in the first exploratory search, the authors are in the habit of turning composition-based statistics off for short proteins but keeping it on for larger ones. 
Other parameters: Expect value, word size, gap penalty, substitution matrix

Expect (E) value may be any positive number; the default value is 10.Obviously, it is the number of matches in the database that one should expect to find merely by chance. Typically, there is no reason to change this value. However, in cases when extremely low similarity needs to be analyzed, the threshold may be increased (e.g. to 100), and conversely, when it is desirable to limit the size of the output, lower E-values may be used. 
Word size (W) must be an integer; the default values are 3 protein sequences and 11 for nucleotide sequences. This parameter determines the length of the initial seeds picked up by BLAST in search of HSPs. Currently supported values for the protein search are only 3 and 2. Changing word size to 2 increases sensitivity, but significantly slows down the search. This may be considered one of the last resorts for cases when no homologs are detected for a given query with regular search parameters.

As described above, different amino acid substitution matrices were constructed using different approaches and are tailored to detecting similarities among sequences with different levels of divergence. However, a single matrix, BLOSUM62, is reasonably efficient over a broad range of evolutionary change, so that situations when a change of matrix is called for are rare. For particularly long alignments with very low similarity, a switch to BLOSUM45 may be attempted, but one should be aware that this could also trigger an increase in the false-positive rate. In contrast, PAM30, PAM70 or BLOSUM80 matrices may be used for short queries.  Each substitution matrix should be used with the corresponding set of gap penalties. Since there no analytical theory for calculating E-values for gapped alignments, parameters of equation (1) had to be determined by extensive computer simulations separately for each pair combination of a matrix, gap opening penalty and gap extension penalty. Therefore only a limited set of combinations is available for use (Table 4.  ). However, there is no indication that significant changes in these parameters would have a positive effect on the search performance.

Table 4.8.  Substitution matrices and gap penalties 

	Query length, aa
	Substitution matrix
	Gap opening cost 
	Gap extension cost 

	<35
	PAM30
	9
	1

	35-50
	PAM70
	10
	1

	50-85
	BLOSUM80
	10
	1

	>85
	BLOSUM62
	10
	1



Additional aspects of BLAST setup are discussed in the next subsection because they apply to the output of the search. A useful feature that has been recently added to NCBI BLAST is the ability to save and bookmark the URL with a particular BLAST setup using the ‘Get URL’ button at the bottom of the page. For a habitual BLAST user, it pays to save several setups tailored for different tasks.

4.3.5.2. Running BLAST and formatting the output

A BLAST search can be initiated from either a GI number or the sequence itself. In the current implementation on the NCBI web page (http://www.ncbi.nlm.nih.gov/BLAST), the user can run a BLAST search and then try several different ways of formatting the output. The default option involves toggling between two windows, which may become confusing; it may be convenient to switch to a one-window format using the Layout toggle and save the setup as indicated above.

CDD search is run by default in conjunction with BLAST. As discussed above, this search is much faster than regular BLAST and is often more sensitive. The CDD search is normally completed long before the results of conventional BLAST become available. This allows the user to inspect the CDD search output and get an idea of the domain architecture of the query protein, while waiting for the BLAST results. On many occasions, all one really needs from a database search is recognizing a particular protein through its characteristic domains architecture or making sure that a protein of interest does not contain a particular domain. In such situations, there may be no reason to even wait for the regular BLAST to finish. The CDD search may also be run as a stand-alone program from the main BLAST page. In this mode, it is possible to change the E-value threshold for reporting domain hits (default 0.01), which can be helpful for detecting subtle relationships and new versions of known domains. 

The current BLAST default includes limitation on the number of descriptions and the number of alignments included in the output; the current defaults are 250 and 100, respectively. With the rapidly growing database size, there is often need to increase these limits in order to investigate a particular protein family. Doing so, however, is likely to result in large outputs that are har dot download and navigate. Limiting the search space as outlined above could be a viable and often preferable option. 

The graphical overview option is to select whether a pictorial representaiton of the database hits aligned to the query sequence is included in the output.  Although it slows loading the page, this option is essential for a quick examination of output to get an idea of the domain architecture of the query.  Each alignment in the graphical view window is color-coded to indicate  its similarity to the query sequence. 

The Alignments views menu allows the user to choose  the mode of alignment presentation. The default Pairwise alignment is the standard BLAST alignment view of the pairs between the query sequence and each of the database hits. All other views are pseudo-multiple alignments produced by parsing the HSPs using the query as a template. Query-anchored with identities shows only residues that are different from the ones in the query; residues identical to the ones in the query are shown as dashes.  Query-anchored without identities is the same view with all residues shown. Flat query-anchored with identities is a multiple alignment that allows gaps in the query sequence;  residues that are identical to those in the query sequence are shown as dashes.  Flat query-anchored without identities also allows gaps in the query sequence but shows all the residues. Pairwise alignment is definitely most convenient one inspection of sequence similarities, but the “flat query-anchored without identities” option allows one to generate multiple alignments of reasonable quality that can be saved for further analysis. This option is best used with the number of descriptions and alignments (see above) limited to a manageable number (typically, no more that 50).


The Taxonomy Reports option allows the user to produce a taxonomic breakdown of the BLAST output. Given that many BLAST outputs are quite large these days, this is extremely helpful, allowing one to promptly assess the phyletic distribution of the given protein family and identify homologs from distant taxa.

4.3.5.3 PSI-BLAST and PHI-BLAST

The output of BLAST can be used as the input for PSI-BLAST. The critical parameter that is typically set before starting the initial BLAST run is inclusion threshold; the current default is E=0.005. This parameter sets the E-value that is required to include a HSP into the multiple alignment that is used to construct the PSSM.  Combined with composition-based statistics, the E-value of 0.005 is a relatively conservative cut-off; spurious hits with a lower E-value are uncommon: i.e. they are observed more or less as frequently as expected according to Karlin-Altschul statistics, i.e. in approximately one of 200 searches. Therefore, carefully exploring the results with lower E-values set as inclusion threshold often allows one to discover subtle relationship that are not detectable with the default cut-off. When studying new or poorly understood protein families, we routinely employ thresholds up to 0.1. Currently, PSI-BLAST can be run only manually, i.e. each iteration has to be launched by the user. New sequences detected in each iteration with an E-value above the cut-off are highlighted in PSI-BLAST output. There is also the extremely useful option of manually selecting or deselecting sequences for inclusion into the PSSM. Selecting “hopeful” sequences with E-values below the cut-off  may help in a preliminary exploration of an emerging protein family; deselecting sequences that appear to be spurious despite E-values above the cut-off may prevent corruption of the PSSM. The PSSM produced by PSI-BLAST at any iteration can be saved and used for subsequent database searches. 

We realize that the above recommendation to investigate results that are not reported as statistically significant is a call for controversy. However, we believe there are several arguments in favor of these. Firstly, such analyses of subtle similarities have repeatedly proved useful, including the original tests of PSI-BLAST effectiveness [Altschul, 1997 #191]. Secondly, like in so many other types of research, what is really critical is the original discovery; once one gets the first glimpse of what might be an important new relationship, statistical significance often can be demonstrated using a combination of additional methods (more on this in section 4.3.7). Thirdly, we certainly do not advocate lowering the statistical cut-off for any large-scale, let alone automated searches. This can be safe only when applied in carefully controlled case studies. 

Pattern-Hit-Initiated BLAST (PHI-BLAST) is a variant of BLAST that searches for homologs of the query that contain a particular sequence pattern PMID: 9705509.  As discussed above, pattern search often is insufficiently selective. PHI-BLAST rectifies this by first selecting the subset of database sequences that contain the given pattern and then searching this limited database using the regular BLAST algorithm. Although the importance of this method is not comparable to that of PSI-BLAST, it can be useful for detecting homologs with a very low overall similarity to the query that nevertheless retain a specific pattern. 

4.3.5.4. Stand-alone (non-web) BLAST 

All the discussion in the preceding sections applied to the WWW version of BLAST, which is indeed most convenient for analysis of small numbers of sequences and is the only form of database search used by experimental biologists. However, the web-based approach is  not suitable for large-scale searches requiring extensive post-processing, which are common in genome analysis. For these tasks, the stand-alone version of BLAST, which can be obtained from NCBI via ftp and installed locally under the Unix or Windows operation systems, has to be used.  The stand-alone BLAST programs naturally do not offer the conveniences available on the web, but they do provide some additional and useful opportunities.  In particular, stand-alone PSI-BLAST can be automatically run for the specified number of iterations or until convergence. 


With the help of simple additional scripts, the results of stand-alone BLAST can be put to much use beyond the straightforward database search. Searches with thousands of queries can be run automatically, followed with various post-processing steps; some of these will figure in the next chapter on genome annotation. Here, it is worth mentioning the BLASTCLUST program (written by Ilya Dondoshansky in collaboration with Yuri Wolf and EVK), which is also available from NCBI via ftp and works only with stand-alone BLAST.  BLASTCLUST allows clustering sequences by similarity with the results of an all-against-all BLAST results used as input. BLASTCLUST identifies clusters using two criteria: level of sequence similarity, which may be expressed either as percent identity or as score density (number of bits per aligned position), and the length of HSP relative to the length of the query and subject (e.g. it may be required that, for the given two sequences to be clustered, the HSP(s) should cover at least 70% of both). This program can be used, for example, to eliminate protein fragments  from a database or to identify families of paralogs, with or without taking into account the domain architecture. 

4.3.6. Analysis and interpretation of BLAST results: separating wheat from the chaff and getting the most out of it

In spite of its solid statistical foundation, including composition-based statistics, BLAST search inevitably produces both false positives and false negatives. The main cause for the appearance of false-positives, i.e. database hits that have “significant” E-values but, upon more detailed analysis, turn out not to reflect homology, seems to be subtle compositional bias missed by composition-based statistics or low-complexity filtering. The reason false-negatives are inevitable is, in a sense, more fundamental: in many cases, homologs really have low sequence similarity that is not easily captured in database searches, and even if reported, may not cross the threshold of statistical significance. In an iterative procedure like PSI-BLAST, both the opportunities to detect new and interesting relationships and the pitfalls are further exacerbated. Beyond the (conceptually) straightforward issues of selectivity and sensitivity, functional assignments based on database search results require careful interpretation if we want to extract the most out of this type of analysis, while minimizing the chance of false predictions. Below we consider the both the issues of search selectivity and sensitivity and the functional interpretation. 

There can be no cut-off set to accurately partition the database hits for a given query into relevant ones, indicative of homology, and spurious ones. By considering only database hits with very high statistical significance (e.g. E <10-10) and applying composition-based statistics, false positives can be eliminated for the overwhelming majority of queries, but the price to pay is high: numerous homologs, often including those that are most important for functional interpretation will be missed. 

 Now that we have come to practical aspects of database search, specific examples will work best. Let us examine the BLAST results for a human protein called TSG101. This protein appears to have important roles in a variety of human cancers and in budding of viruses, including HIV (PMID: 8616888 PMID: 9019400 PMID: 11172041 PMID: 11595185 PMID: 11973141 PMID: 11726960). We first run the default BLAST search (a reminder: this includes CD search; composition-based statistics is turned on) using the TSG101 sequence (T101_HUMAN) as the query. Since CD search is much faster than BLAST, we have the opportunity to examined the potential domain architecture of TSG101 while BLAST is running. Distinct statistically significant domain hits are reported for the N-terminal and C-terminal regions of TSG101 sequence; in addition, there is a low complexity segment in the middle that probably corresponds to a non-globular domain (Fig. 4    ). The N-terminal part is similar to the UBCc domain, the catalytic domain of the E2 subunit of ubiquitin-conjugating enzymes. The statistical significance of this similarity is overwhelming, with an E-value <10-13. The domain is unique (the only hit in this part of TSG101 sequence) and UBCc is known to be a globular domain, so there is no reason to suspect a spurious hit due to compositional bias. Therefore we must conclude that the N-terminal portion of TSG101 is a homolog of the catalytic domains of E2 enzymes. Does this mean that this domain of TSG101 has the activity of ubiquitin ligase? The answer comes from a more careful examination of the alignment and is negative. We can easily see that the conserved catalytic cysteine residue of E2, which conjugates ubiquitin and is essential for the enzymatic activity (PMID: 1321826),  is replaced by tyrosine in TSG101. Soon after the discovery of TSG101, similar type of analysis (in the pre-CDD days when it was harder!)  led to the conclusion that TSG101 was an inactivated homolog of E2 enzymes, probably a regulator of ubiquitination (PMID: 9253709 PMID: 9241264).  These predictions of TSG101 structure and function have been subsequently confirmed experimentally (PMID: 11172000 PMID: 12006492). 

The domain hits of the C-terminal region of TSG101 are of a very different nature. There are three overlapping domains with moderate similarity to the C-terminal portion of TSG101 (Fig. 4       ). One of these belongs to an uncharacterized family of bacterial proteins, whereas two others are myosin and tropomyosin, proteins known to contain coiled-coil domains, a distinct non-globular -helical superstructure. A distinctive feature of coiled-coil domains is the periodic distribution of leucines which tend to occur 7 residues apart. A simple visual examination of the alignment of TSG101 with the uncharacterized bacterial domain reveals this pattern of leucines (Fig. 4    ), suggesting that TSG101 contains a C-terminal coiled-coil domain. Prediction using the COILS2 program (data not shown; see  4.   ) readily confirms this prediction. How do we interpret the domain hits for the C-terminal part of TSG101? Coiled-coil domains occur in a huge variety of proteins and it would ridiculous to consider them all to be homologous. Thus, these hits are not indications of homology and, in all likelihood, do not point to any specific functional similarity between the respective proteins and TSG101. So, in the traditional sense, these domain hits are spurious, i.e. caused by similar amino acid composition and structure of the query and certain domains present in the CDD collection, rather than by homology. However, these hits are not uninformative. They allow us to predict the existence of a coiled-coil domain in TSG101, and this domain is likely to mediate important protein-protein interactions. Indeed, it has been shown that the coiled-coil domain is responsible for the interaction of TSG101 with stathmin, a phosphoprotein implicated in tumorigenesis (PMID: 8616888). 

We have already learned a lot about the functions of TSG101 from the CD search alone. As mentioned above, in many situations, this information could be all a researcher needs from computational analysis of a sequence. However, for the purpose of this discussion, let us now turn to BLAST. The search returns 184 hits and their distribution along the TSG101 sequence shows the presence of several full-length hits with highly significant similarity to TSG101 (we may immediately suspect these are orthologs) as well as a number of domain-specific hits (Fig. 4      ).   Examination of the full-length alignments confirms the conservation of domain architecture in probable TSG101 orthologs not only in distantly related animals (furit fly and nematode) but also in the plant Arabidopsis thaliana. Moreover, in all of these alignments, the tyrosine replacing the catalytic cysteine of E2 is conserved (Fig. 4   ), indicating that all these TSG101 orthologs are enzymatically inactive. This leads us to the remarkable conclusion that inactivation of a E2 paralogs and its fusion with a coiled-coil domain leading to the regulatory function of TSG101 have already occurred prior to the divergence of animals and plants. Thus, this regulatory mechanism involved both in cellular transformation and in viral budding from animal cells is at least 800 million years old! Let us note that this conclusion, that was easily reached through the analysis of BLAST output, was not immediately obvious from the CDD search result. What about the domain-specific hits? In fact, there are only three of these for the N-terminal part of TSG101 and all appear to be inactivated homologs of E2 enzymes. This is, of course, something that we recognize in retrospect; note that there is no mention of E2 or ubiquitin or anything else in this BLAST output that would even hint at the homology of TSG101 and ubiquitin-conjugating enzymes. The rest of the hits, located in the central and C-terminal portions of the TSG101 sequence, are to low complexity sequences, including those of coiled-coil domains, with some E-values below 10-4. Does it makes sense to run a second PSI-BLAST iterations starting from this output? We think not (we fully expect an unwieldy proliferation of low complexity sequences in the output), although the reader may want to try the experiment. 

Instead let us try a different approach: low complexity filtering instead of composition-based statistics (the two cannot be used together because masking low complexity regions precludes correct estimation of search parameters). The search with low complexity filtering turned on results in 637 hits. A region of 41 amino acid residues in the middle of TSG101 sequence is masked eliminating the low complexity hits in this region. However, the C-terminal coiled-coil region is not masked and an even greater number of hits with apparently significant E-values are reported. Thus, filtering does not solve the problem. It does suggest, however, a simple trick we will try next. It is common for low complexity (non-globular) regions to separate distinct domains in proteins. Therefore we will run BLAST using only the segment of TSG101 preceding the masked region as the query; to do so, we put 1 to 163 in the ‘Set subsequence windows’ on the BLAST page. The results now are dramatically different. We get only 37 hits; all those with significant E-values are (as we know from the results of the CD search) inactivated E2 homologs, but below the threshold, we now notice some proteins annotated as ubiquitin conjugating enzymes (Fig. 10    ). Now we can run PSI-BLAST. The second iteration brings in two more sequences of inactivated E2’s; the best hit to ubiquitin conjugating enzyme now has an E-value of 0.009, still below the cut-off. After the third iteration, we get the message “No new sequences were found above the 0.005 threshold!”: the search converged. Formally, we have not observed a statistically significant sequence similarity between TSG101 and ubiquitin-conjugating enzymes. However, the E-value of  0.009 is suggestive (let us recall: this means that an alignment with this or greater score is expected to be observed in less than one database search in 100 for the given query), and the detected similarity is worth further investigation. Let us run the search using the same 1-161 fragment of TSG101 as the query but with the composition-based statistics turned off. Now, in the second iteration, we detect two ubiquitin-conjugating enzymes with E-values <0.001 (Fig. 4  ). In this example, an equivalent results would be achieved if a less restrictive cut-off (E=0.01) was used with composition-based statistics. However, there are cases when a search with composition-based statistics turns up relationship that are not detectable at all under the default BLAST parameters.  

In the third and subsequent iterations, the E-values for ubiquitin-conjugating enzyme sequences become extremely low. Here, a clarifying note on E-values reported by PSI-BLAST is due (PMID: 9852764). When, in a PSI-BLAST search, a sequence crosses the inclusion threshold for the first time, the reported E-value is based on the score of the alignment of this sequence and the PSSM constructed in the previous PSI-BLAST iteration, which did not include the sequence in question. Therefore this E-value accurately reflects the similarity between the given sequence and the rest of the protein family involved in PSSM construction. However, for the next iteration, the sequence(s) in question, e.g. those of E2 enzymes in the above example, become part of the alignment used for PSSM construction and their E-values get unduly inflated. Thus, inferences of homology and functional predictions should taken into account only the first E-value below the threshold reported for the sequence of interest. 


In order to introduce another crucial aspect of PSI-BLAST analysis, we will now leave TSG101 and turn to other examples. In theory (or, rather, in an ideal world because no existing theory, in the strict sense, applies here), PSI-BLAST should be expected to be symmetrical with respect to protein family members. In other words, each member used as the query should retrieve from the database the entire family. In practice, the effect of query choice on the outcome of the search can be dramatic [Aravind, 1999 #2]. Consider how different queries fare in retrieving members of the ATP-grasp superfamily of enzymes, which includes primarily ATP-dependent carboligases (PMID: 9416615). The biotin carboxylase domain of the human acetyl-CoA carboxylase initially retrieves other biotin carboxylases.  After ~200 sequences of biotin carboxylases, PSI-BLAST starts finding carbamoyl phosphate synthetases, ~100 of them.  Only after these, other members of the superfamily (D-alanine-D-alanine ligase, phosphoribosylamine-glycine ligase and others) start appearing in the output.  It takes four iterations and almost 1,000 database hits before this search finds synapsin, a distant member of the superfamily that  is involved in regulating exocytosis in synaptic vesicles and has been shown to have the ATP-grasp domain by crystal structure analysis (PDB entry 1auxA [Esser, 1998 #649]).  Using synapsin as a query in PSI-BLAST search with default parameters is even worse: only other members of the synapsin family itself are retrieved. Only changing the inclusion threshold to 0.01 results in retrieval of other members of this superfamily in the fourth and subsequent iterations. In contrast, using M. jannaschii protein MJ1001 as a query in PSI-BLAST search with default parameters, results in retrieval of most members of the ATP-grasp superfamily, including the synapsins, in the second iteration.  A regrettable note of personal experience belongs here: because of this remarkable asymmetry, we initially failed to predict the structure of synapsin! (PMID: 9416615). This and other examples that are discussed in detail elsewhere [Aravind, 1999 #2] show that, to characterize a protein (super)family, it is never sufficient to run a single PSI-BLAST search; either all known members or a representative subset should be used as queries. The search then need to be repeated with newly detected members in “superiteration” mode; just like PSI-BLAST, this process that can be run either automatically or manually stops only when no new sequences with credible similarity to the analysed family are detected. As a potentially useful tip for query choice, it is interesting to note that, in our experience, prokaryotic, and particularly archaeal, proteins are often better queries than their eukaryotic homologs. This conclusion has been reached in the early days of genomics (PMID: 8723345) ; [Galperin, 1997 #108] and still holds true. Among the obvious reasons for this trend are the generally shorter length and lower content of low complexity sequences in prokaryotic proteins. 

The final important aspect of BLAST searches that we must mention here is the importance of protein domain architecture for inferring the function of the query protein from the functions of homologs. Assigning function on the basis of one homologous domain, while overlooking the multidomain architecture of the query, the database hit or both, is one of the most common sources of regrettable errors in sequence analysis. We will discuss some specific examples in the next chapter when discussing genome annotation. 

This brief discussion certainly cannot cover all “trade secrets” of sequence analysis; some more case studies are presented in the next section. However, the above seems to be sufficient to formulate a few rules of thumb that help one extract maximal amount of information from database searches while minimizing the likelihood of false “discoveries”. 

· Searching a domain library is often easier and more informative than searching the entire sequence database; however, the latter yields complementary information and should not be skipped if details are of interest.
· Varying the search parameters, e.g. switching composition-based statistics on and off, can make a difference.

· Using subsequences, preferably chosen using objective criteria, e.g. separation from the rest of the protein by a low complexity linker, may improve search performance. 

· Trying different queries is a must when analyzing protein (super)families.

· Even hits below the threshold of statistical significance often are worth analyzing, albeit with extreme care.

· Transferring functional information between homologs on the basis of a database description alone is dangerous; conservation of domain architectures, active sites and other features needs to be analyzed (corollary: automated identification of protein families is difficult and automated prediction of functions is extremely difficult). 

4.3.7. The Road to Discovery

      The notion of punctuated equilibrium applies not only to the evolution of life but also to the history of science: epochs of relative quiet are punctuated by bursts of discoveries. The event that sets off the avalanche is usually the development of a new method. This phenomenon reproduces itself with an uncanny regularity in all areas of science - and computational biology is no exception. The authors of this book have personally experienced the excitement of two such groundbreaking developments. The first one came in 1994 with the algorithm for iterative motif search implemented in the MoST program  (PMID: 7991589). A variety of (relatively) subtle relationships between protein domains that previously were completely unknown suddenly were within our reach. Arguably, the most remarkable of these new findings was the discovery of the BRCT domain, so named after BRCA1 [(hereditary) Breast Cancer Associated protein 1] C-terminus (PMID: 8673121). The initial discovery of this domain took something like a leap of faith: the first seed for MoST was derived from an alignment between the C-terminal part of BRCA1 and a p53-binding protein that was produced by BLAST and was not statistically significant at all. Subsequently, of course, some level of statistical significance, but more importantly, the uniqueness of the new domain and the coherence of its diagnostic pattern of amino acid residue conservation was established by MoST searches and multiple alignment analysis. Furthermore, the BRCT domain superfamily was greatly expanded by combining MoST with other profile searches, Pfsearch and Gibbs sampler (PMID: 9034168), and these results were simultaneously corroborated with a completely independent method (PMID: 9000507). In the years since, numerous experimental studies led to the characterization of the BRCT domain as one of the most important adaptors that mediate protein-protein interactions in eukaryotic cell cycle checkpoints (e.g. PMID: 11877378  and references therein). The BRCT domain also served as the training ground for the next-generation iterative search program, PSI-BLAST. The findings that were originally made quite painstakingly using MoST and other methods were reproduced using PSI-BLAST with minimal human intervention [Altschul, 1997 #191]. PSI-BLAST and HMM methods that came of age more or less simultaneously quickly enabled an unprecedented rise of new findings. The discovery of the 3’-5’ exonuclease domain in the Werner syndrome protein and the unification of histidine kinases, type II topoisomerases, HSP90 molecular chaperones and MutL repair proteins in a single distinct superfamily of ATPase domains deserve to be mentioned as two of the very first ones (PMID: 9159160). 

Much of the new knowledge obtained using these methods, along with additional structural and functional information, was soon encapsulated within the new class of profile search tools, of which Pfam, SMART and CDD search, seem to be the most practically important ones (see above). These tools, which employ growing and, for the most part, carefully tested libraries of predefined PSSMs (or similar HMM models), have dramatically simplified and, to a large extent, trivialized the process of identification of already known domains in protein sequences, even in cases of limited sequence conservation. This is, of course, a natural and welcome development: what starts as an exciting investigation of uncharted territories ends up being a routine methodology, and the sooner the better.  Nevertheless, it is equally clear that fringe cases, in which, even with these new tools, expert exploration is required to validate and interpret domain finding, still abound, particularly with the rapid progress of genome sequencing. And, of course, many new domains that are still missing in the existing collections remain to be discovered, and for this, the libraries of already known domains are of little use.

Nothing helps capturing the flavor of a relatively complex research approach better than real-life examples, so let us consider some interesting proteins for which, to our knowledge, there is no annotation in either published literature or available databases. We first come back to phage l gene Ea31, which we already touched upon in Chapter 1. We start by running the sequence of this protein as a PSI-BLAST query, with the CDD search option turned on, but the composition-based statistics turned off  (see above). The CDD search immediately results in a provocative finding: a hit to the so called HNH nuclease domain (Fig. 4.   ). The similarity is statistically significant but the E-values is not particularly impressive, about 0.001. Can we conclude that Ea31 contains a nuclease domain of this particular family and predict that this phage protein is a nuclease? Let us first note that there are two distinct questions here because the presence of a conserved domain does not automatically imply the corresponding activity. There are numerous cases of the same domain present in both enzymatically active and inactivated proteins. Furthermore, before a more detailed investigation, even the conclusion on the presence of an HNH domain in Ea31 would be premature. Experience shows that spurious hits with a similar level of statistical significance are not particularly uncommon in CDD searches (in other words, they appear more often than once in 1000 searches as suggested by the E-value), probably due to subtle low complexity present in some of the multiple alignments behind the PSSMs. So let us investigate farther. First of all, by clicking on the HNH domain icon in the CDD search, we obtain a multiple alignment of our query (Ea31) with a diverse set of 10 HNH domains (Fig. 4.   ). We should note that nearly all of these proteins, including Ea31 share a conserved pattern of two pairs of cysteines and the aspartate-histidine (DH) doublet. Examination of the relevant literature immediately shows that the cysteines and the histidine in this pattern are the exact metal-coordianting residues that comprise a Zn-finger-like domain in the HNH family nucleases and are required for the nuclease activity (PMID: 10972843   ). The structural elements of the HNH nuclease domain known from the available 3D structure (PDB   ) are also well conserved in Ea31 (data not shown). At this point, we are in a position to conclude that the CDD hits pointed us in the right direction and Ea31 indeed contains a HNH domain and, in all likelihood, is an active nuclease. As mentioned in Chapter 1, it seems likely that this predicted nuclease forms an ATP-dependent enzyme with the product of the adjacent (and probably coexpressed) gene Ea59. The HNH family includes several restriction enzymes, e.g. McrA, and other enzymes involved in defense function, such as colicins. Therefore it seems  likely that such an ATP-dependent nuclease functions as a phage-specific restriction-modification enzyme.

Our little discovery is made and hopefully will be eventually tested experimentally. But let us not leave the HNH nuclease family just yet and see what happens if we do not rely on the CDD search but rather continue the regular PSI-BLAST analysis. The original PSI-BLAST search with the default cut-off E-value of 0.005 does not take off after the first iteration. We will try to lower the cut-off and run PSI-BLAST carefully monitoring the results. A search with E=0.1 brings in numerous proteins in successive iterations, among which proteins annotated as putative HNH family endonucleases start appearing in the second iteration. After running 5 PSI-BLAST iterations, we detect about 100 sequences above the chosen cut-off. Examination of all these sequences shows the conservation of the metal-binding motif, suggesting that even using such a liberal cut-off in this case does not result in spurious hits (let us note parenthetically that this very approach of lowering the cut-off was used for detecting BRCT domains in the original PSI-BLAST work). Continuing running iterations one by one on the web becomes cumbersome with a large number of retrieved sequences as well as time-consuming, so at this point, we switch to a local search on a UNIX workstation, which we run to convergence. The search does indeed converge after the   iteration and inspection of the results suggests at least two important conclusions. Firstly, it is worth noting that the great majority of the sequences detected in this search and containing the conserved metal-binding site are annotated in the database as “hypothetical proteins” (or worse as “predicted transmembrane proteins” etc) and only a minority are labeled as (predicted) nucleases. Thus, although this family, its conserved motifs, structure and enzymatic activity have been described in a considerable number of publications, its representation in current databases does not even approach completeness and researchers have no direct way to become aware of its scope. Secondly, our search detected two members of the HNH family from Arabidopsis thaliana and one from rice, the latter one actually already annotated as a predicted nuclease. Therefore, plants also encode nucleases of this family that so far was considered prokaryotic.  

In the above example, we identified a diverged version of an already well known domain in a previously uncharacterized protein. This was a pretty straightforward observation. Discovering new domains and predicting their functions is a much more challenging task. However, we have an excellent source of such potential new domains: the functionally uncharacterized COGs or Pfam families (see 3…). The COGs are most convenient because they allow selection of potential “targets” for discoveries by phyletic pattern. Figure 4… shows the conserved portion of the multiple alignment of proteins from COG1518 , which is represented in many archaeal and several bacterial species, primarily thermophiles. These proteins show striking conservation among themselves, but extensive searches possible homologs using PSI-BLAST run with low inclusion threshold, CD search likewise tweaked, and threading methods failed to show any credible relationships (the reader may try this again: perhaps the databases will change by the time she gets hold of this book and she will be luckier). A little alignment gazing immediately tells us that these proteins have several charged residues (two glutamates, an aspartate and a histidine) that are conserved in all sequences of this family, without exception (Fig. 4    ). This is a telltale sign of an enzyme: polar amino acids that are invariant in a diverse protein family typically are part of a catalytic center; normally, when a domain is capable of “merely” binding protein, nucleic acid or a small molecule, there will be no invariant polar residues (strangely, we found it hard to cite any particular publication for this generalization; apparently, formal rules for distinguishing enzymes from non-enzymes by analysis of multiple alignments have not been developed, although it seems that we more or less known an enzyme when we see it, provided the aligned sequences are diverse enough). Given the nature of the conserved residues, it appears likely that the putative new enzyme’s activity requires metal coordination; beyond that, it might be dangerous to  farther speculate on the nature of this activity. We will leave it at that for the time being. In the next chapter, when discussing the use of genomic context for functional annotation, we will apply a different method of inference to arrive to specific hypotheses on the biological function and biochemical activity of COG1518 proteins. 

AF2435_Aful_11500011  IVELMGAEAAARNAYYTKFDE 15 ENEVNAMISFGNSLLYSAVLSEIYHTQLNPAISYLHEPSERRFSLALDIAELFKPVIVDRLIFYLVNN 246

AF1878_Aful_11499462  RERLLGIEGKASKHYWDAISL 22 KDIVNAMLNYGYSILLAECVKAVELAGLDPYAGFLHVDVSGRSSLAIDLMENFRQQVVDRVVLRLISY 271

BH0341_Bhal_10172954  LESLRGWEGQAAINYNKVFDQ 19 KDNVNAMLSFAYTLLANDVAAALETVGLDAYVGFMHQDRPGRASLALDLMEELRGLYADRFVLSLINR 266

ygbT_Ecoli_14195559   VEQLRGIEGSRVRATYALLAK 18 GDTINQCISAATSCLYGVTEAAILAAGYAPAIGFVHT--GKPLSFVYDIADIIKFDTVVPKAFEIARR 238

PM1126_Pmul_12721471  --DKENVEAQAALIYFQTL--  9 ENNINAHLNYAYTVLRSAIARALVLYGWLPQLGIFHRSEVNPFNLADDFVEPFRP-LVDLMVWQLWHT 274

PH1245_Phor_7429661   ITEIMNVEARIRQEYYAKWDE 16 KNEMNALISFLNSRLYATIITEIYNTQLAPTISYLHEPSERRFSLSLDLSEIFKPIIADRVANRLVKK 246

SPy1562_Spyo_13622645 KDSLRGIEGQAANQYFRIFND 19 LDCVNALLSFGYSLLTFECQSALEAVGLDSYVGFFHTDRPGRASLALDLVEEFRSYIVDRFVFSLINK 265

MJ0378_Mjan_2495943   ITEVMNVEGRVRTEYYRLWDE 16 KNEMNALISFLNSRLYPAIITELYNTQLTPTVSYLHEPHERRFSLALDLSEIFKPMIADRLANRLVKQ 246

MTH1084_Mthe_7429660  VTDVMNVEGRIRSDYYNAIDS 16 ENMTNAMISFGNSLLYSTVITELYNTQLNPTISYLHEPFERRYSLALDLSEIFKPTLIDRMIISLIKK 258

NMA0630_Nmen_11282800 --DTGNREAQAAALYFQAL--  9 NNAVNAALNYTYAVLRAAVARALTLYGWLPALGLFHRSELNPFNLADDFIEPLRP-LADLTVIHLYEQ 235

TVN0106_Tvol_13540937 INKILGVEGNIWSTYYSAFPF 15 KDELNAMISYGNALLYATVLTKIFITGLNPSISFLHEPSERSFSLALDIADIFKPVIVERTIANLVNK 248

aq_369_Aaeo_7429662   IPELMSVEAEFRKLCYKKLEE 14 QNPLNALISFGNSLTYAKVLGEIYKTQLNPTVSYLHEPSTKRFSLSLDVAEVFKPIFVDNLIIRLIQE 238

Rv2817c_Mtub_7477385  LAELNGFEGNAAKAYFTALGH 16 LDAFNSMVSLGYSLLYKNIIGAIERHSLNAYIGFLHQDSRGHATLASDLMEVWRAPIIDDTVLRLIAD 252

Cj1522c_Cjej_11282801 LNDSKNIEAVAAALYFKTL--  9 LCFENSALNYGYAIIRACIIRAVCISGLLPWLGIKHDNIYNSFALCDDLIEVFRA-SVDDCVLKLKGE 239

TM1797_Tmar_7445238   VSELMGIEGNAREEYYSMIDS 17 KNFANTLISFGNSLLYTTVLSLIYQTHLDPRIGYLHETNFRRFSLNLDIAELFKPAVVDRLFLNLVNT 246

APE1240_Aper_7516361  RDKLLSIEARASRRYWQCIAE 15 LDPFNAALNYGYGMLYSIVEKSLLLVGLDPYLGVFHSEKSGKPSLTLDAIEPFRAPIVDRILALKAGR 271

SSO1450_Ssol_13814677 KELLDKDEPAAARVYWQNISQ 15 TDQFNMALNYSYAILYNTIFKYLVIAGLDPYLGFIHKDRPGNESLVYDFSEMFKP-YIDFLLVRALRS 237

SSO1405_Ssol_13814626 AEEVMQKEAEAAKVYWRGVKS 18 LDPFNRALNIGYGMLRKVVWGAVISVGLNPYIGFLHKFRSGRISLVFDLMEEFRSPFVDRKLIGLARE 306

PF_1066279            VTEIMNVEGRIRQEYYARWDE 16 KNEMNALISFLNSRLYATMISEIYNTQLAPTISYLHEPSERRFSLALDLSEIFKPIIADRIANRLVKK 257

cons/95%              ..t..thEsth...hat.h..    .s.hNthhshh.s.h...h.t.h...th.s.hshhHt...t..shs.Dh.-.hp..hh...h...htp

Fig. 4.  Alignment of a subset of COG1518 proteins: a new enzyme?

See chapter 5 for more on this.

Our final case in this section is a real wild goose chase. Our subject will be the RNA-dependent RNA polymerase (RdRp), an enzyme that attracted enormous attention in the last few years as the apparent amplifier of small RNAs involved in post-transcriptional gene silencing (PTGS). RdRp is a large protein that is highly conserved in most eukaryotes, including animals, fungi, plants and, importantly, the early-branching protozoon Giardia; it is missing in yeast S. cerevisiae, the mircosporidion E. cuniculi and, interestingly, insects and vertebrates, which is attributed to lineage-specific gene loss during eukaryotic evolution. As noticed in the literature and confirmed by database search, RdRp does not show significant similarity to any other proteins; in particular, there seems to be no relationship whatsoever with enzymes of RNA viruses that have the same activity. Thus, the origin of this unique enzyme at the dawn of eukaryotic evolution remains a mystery. However, inspection of the alignment of the RdRp’s revealed a striking signature present in all these sequences: three invariant aspartates flanked by a few other conserved residues. Negatively charged residues coordinating metal ions are a fixture in all types of DNA and RNA polymerases. A hypothesis therefore emerged that this motif was likely to be part of the active site of RdRp’s. Clearly, any similarity between RdRp’s another polymerases, if it exists, must be subtle, otherwise it would have been picked by PSI-BLAST (if not regular BLAST). We ran a PHI-BLAST search using the most highly conserved segment of the RdRp from the slime mold Dictyostelium discoideum as the query and the following delimiting amino acid pattern: 

[GAS]D[ILVMF]DGDx[ILVMFYW]x[ILVMFYW]. 

The search retrieved from the database all available sequences of eukaryotic RdRp’s and, in addition, another alignment that is shown in Fig. 4.    . Strikingly, although there is no statistical significance at all to this alignment (E-value of nearly 6), our signature fits the known active site located in the second-largest subunit of DNA-dependent RNA polymerase (DdRp), the enzyme that catalyzes transcription in all cellular life forms (PMID: 12016306 PMID: 12016307). Furthermore, there seems to be some similarity around this signature that might reflect conservation of the structural elements supporting the polymerase active site (Fig. 4…. ). Given the lack of statistical support, these observations should be regarded with utmost caution and outright skepticism. 

NC_003450) COG0085:DNA-directed RNA polymerase beta subunit/140 kD

subunit (split gene in Mjan, Mthe, Aful) [Corynebacterium glutamicum] 
(AP005279) Hypothetical protein [Corynebacterium glutamicum ATCC 13032]

          Length = 2169

 Score =  5.8 bits (19), Expect = 5.9

 Identities = 26/91 (28%), Positives = 36/91 (38%), Gaps = 19/91 (20%)

Query:   

3    MVIKNPCTHPGDVRYLKAVDNLRLRHLRNVLVFSTKGDVPNFKEISGSDLDGDRYFFCYD  pattern 50                                          **********

     MV ++P    G VRYL+ V N     L  V V      V +F      D DGD       

Sbjct:

1556 MVWRDPVIRDGGVRYLRVVIN---DDLHGVAVNPVS--VKSFD----GDFDGDSVGL--- 

Query:  63   KSLIGNRSKSETAYLGDETVSNNDKKANVFN 93

             +GN  K       +E +S    +AN+ +

Sbjct:  1604 ---VGNLPKK----AHEEALSRLTVEANMLD 1627

Fig. 4     The PHI-BLAST hit between RdRp and DdRp
RdRP_Ddis   VMVIKNPCTHPGDVrylkavdnlrlrHLRNVLVFSTkgdv-PNFKEISGSDLDGDRYFFCYDKSLIGNRS

RdRp_Atha   VAIAKNPCLHPGDVrileavdvpqlhHMYDCLIFPQkgdr-PHTNEASGSDLDGDLYFVAWDQKLIPPNR

RdRp_Cele   VLLTKNPCIVPGDVrifeavdipelhHMCDVVVFPQhgpr-PHPDEMAGSDLDGDEYSVIWDQELLLERN

RdRp_Ncra   CVVGRNPSLHPGDIrvveavdvpalrHLRDVVVFPLtgdr-DVPSMCSGGDLDGDDFFVIWDPLLIPKER

RdRp_Spom   CIVARNPSLHPGDVrvckavrcdelmHLKNVIVFPTtgdr-SIPAMCSGGDLDGDEYTVIWDQRLLPKIV

RdRp_Gint   rreASRQNLKPvlpsfvaqeairgm-YRGVICFPKYyegr-PMTDCLSGSDLDGDIYWVSWDASLLIQRE

DdRp_Cglu   -mvwRDPVIRDGGVRY----------LRVVInddlhgvavnPVSVKSFDGDFDGDSVGLVGNLPKKAHEE

DdRp_Ecol   VLLNRAPTLHRLGIQA----------FEPVLIEGKAiqlh-PLVCAAYNADFDGDQMAVHVPLTLEAQLE

DdRp_Aful   IVLFNRPSLHrmsima----------HYVRVLPYKTfrln-PAVCPPYNADFDGDEMNLHVPQSLEAQAE

DdRp_Aper   VLFNRQPSLHRMSIMG----------HIVRVMPGKTfrln-LLVCPPYNADFDGDEMNLHVPRLEEAQAE

DdRp_Scer   VLFNRQPSLHRLSILS----------HYAKIRPWRTfrln-ECVCTPYNADFDGDEMNLHVPQTEEARAE
Fig. 4    Multiple alignment of the putative catalytic sites of RdRp and the known catalytic sites of DdRp

Nevertheless, it seems likely that the resemblance between the most conserved regions of the two classes of polymerases is not fortuitous. Rather, it might be explained either by divergence from a common ancestor or by convergence driven by similar functional requirements to the polymerase active sites. The latter alternative is not unrealistic: in Chapter 2, we already explored a rather similar case of convergence between bacterial and eukaryotic DNA primases. If the two polymerases are homologous, the evolutionary scenario becomes obvious, with a duplication of the RdRp catalytic subunit near the onset of the evolution of eukaryotes, followed by extreme, rapid divergence, giving rise to the RdRp. We will know the answer once the 3D structure of RdRp is determined. Regardless of the outcome, there seems to be an excellent chance that the conserved region shown in Fig. 4   is an important part of the catalytic site of RdRp.

We presented here three case studies of uncharacterized proteins that range from straightforward to openly speculative. We believe that these are illustrative of the way computational analysis of proteins works, by drawing from several lines of evidence to produce predictions whose levels of confidence vary to a great extent. 

4.4.  Prediction Analysis of Structural Features of Proteins

Analysis of various features of protein molecules, which helps predict the type of structure and cellular localization of a given protein or entire protein family is an indispensable complement to homology-based analysis. Furthermore, identification of certain structural features of proteins, such as signal peptides, transmembrane segments or coiled-coil domains, may provide certain functional clues even in the absence of detectable homologs. It is not our intention here to discuss these methods in detail, but a brief summary is necessary to develop a reasonably complete picture of computational approaches that are important in genomics.

4.4.1.  Predicting cellular localization of the protein

4.4.1.1. Signal peptides

The extensive studies of properties of signal peptides by Gunnar von Heijne and colleagues [von Heijne, 1984 #835; von Heijne, 1985 #834; Claros, 1997 #833] resulted in the development of the SignalP program [Nielsen, 1997 #769], which has become the de facto standard for signal peptide prediction and made identification of signal peptides a relatively straightforward process. .  SignalP is a neural network method that has been trained separately on experimentally characterized sets of signal peptides from eukaryotes, Gram-positive bacteria and Gram-negative bacteria. Thus, the appropriate version of the program needs to be selected according to the origin of the analyzed protein (the Gram-positive version can be used for other prokaryotes with single-membrane cells, i. e. all other then Proteobacteria). SignalP is available at the web site of the Technical University of Denmark at http://www.cbs.dtu.dk/services/SignalP. The only other widely used algorithm for prediction of signal peptides was developed by Kenta Nakai and Minoru Kanehisa [Nakai, 1991 #830] and included in the PSORT (http://psort.nibb.ac.jp) suite of programs ([Nakai, 1999 #771], see below). 

4.4.1.2. Transmembrane segments

There is a variety of methods for predicting transmembrane segments or, more precisely, transmembrane -helices in proteins (Table 4.9). All those programs rely to some degree on the hydrophobicity profiles of the polypeptide chains; several of them use experimentally determined transmembrane segments as training sets. 

Table 3.9.  Software tools for prediction of transmembrane segments

	Program 
	Author, WWW site
	Output
	Ref.

	
	
	TM borders
	Hydropho-bicity plot
	Topology prediction
	

	TMHMM
	Anders Krogh,  http://www.cbs.dtu.dk/ services/TMHMM
	Yes
	Yes
	Yes
	[Krogh, 2001 #836]

	TopPred2
	Manuel Claros, http://www.sbc.su.se/ ~erikw/toppred2/
	Yes
	Yes
	Yes
	[Claros, 1994 #837]

	PhDhtm, PhD topology
	Burkhardt Rost, http://cubic.bioc. columbia.edu/pp/
	Yes
	No
	Yes
	[Rost, 1995 #206; Rost, 1996 #839]

	PSORT, PSORT II 
	Kenta Nakai, http://psort.nibb.ac.jp
	Yes
	No
	Yes
	[Nakai, 1991 #830; Nakai, 1999 #771]

	DAS
	Miklos Cserzo, http://www.sbc.su.se/ ~miklos/DAS/
	Yes
	Yes
	No
	[Cserzo, 1997 #840]

	TMpred
	Kay Hofmann, http://www.ch.embnet. org/software/TMPRED _form.html
	Yes
	Yes
	Yes
	[Hofmann, 1993 #841]

	HMMTop
	Gabor Tusnady, http://www.enzim.hu/ hmmtop/
	Yes
	No
	Yes
	[Tusnady, 2001 #846]

	TMAP
	Bengt Persson, http://www.mbb.ki.se/ tmap/
	Yes
	No
	Yes
	[Persson, 1994 #847; Persson, 1997 #844]

	SOSUI
	Shigeki Mitaku, http://sosui.proteome. bio.tuat.ac.jp/
	Yes
	Yes
	Yes, with a graph
	[Mitaku, 1999 #1091; Hirokawa, 1998 #1092]

	Memsat2
	David T. Jones, http://bioinf.cs.ucl.ac.uk /psipred/
	Yes
	No
	Yes
	[Jones, 1999 #828]


 
In addition to predicting the positions of transmembrane segments, some of these programs predict membrane topology of the protein using the "positive-inside" rule [von Heijne, 1992 #842].  While most of the programs listed in Table 3.9 accept only single sequences, TMHMM and SOSUI would also accept FASTA libraries.  PHD additionally accepts multiple alignments, and TMAP works only with multiple alignments. 

4.4.1.3. Protein targeting


Prediction of mitochondrial and chloroplast targeting signals allows one to differentiate between cytosolic and organellar proteins (Table 4.10).  The PSORT server (http://psort.nibb.ac.jp), developed and maintained by Kenta Nakai at the University of Tokyo, additionally predicts protein targeting to the nucleus, endoplasmic reticulum, lysosomes, vacuoles, Golgi complex, and peroxisomes, and identifies probable GPI-anchored proteins. 

Table 4.10.  Software tools for prediction of protein targeting

	Program 
	Author, WWW site
	Comment
	Refs.

	PSORT  PSORTII iPSORT
	Kenta Nakai, http://psort.nibb.ac.jp
	A comprehensive set of programs for analysis of protein targeting in prokaryotic and eukaryotic cells. 
	[Nakai, 1991 #830; Nakai, 1992 #831; Nakai, 1999 #771]

	ChloroP
	Olof Emanuelsson,  http://www.cbs.dtu. dk/services/ChloroP
	Searches for chloroplast transit peptides, can process several sequences at a time
	Top of Form

Bottom of Form

	TargetP
	Olof Emanuelsson,  http://www.cbs.dtu. dk/services/TargetP
	Searches for chloroplast transit peptides, mitochondrial targeting peptides, and signal peptides
	[Emanuelsson, 2000 #832]

	MitoProt
	Manuel Claros, http://mips.gsf.de/ cgi-bin/proj/medgen/ mitofilter
	Predicts mitochondrial targeting signals; associated with the MitoP database of mitochondrial genes, proteins, and diseases
	[Claros, 1996 #939]

	Predotar
	Ian Small, http://www.inra.fr/ predotar/
	Predicts mitochondrial and chloroplast targeting peptides, aims at distinguishing between the two classes of targeting signals. 
	Top of Form

Bottom of Form


4.4.2.  Prediction of structural features and subcellular localization of proteins

Prediction of structural features of a protein does not directly lead to functional prediction, but is a prerequisite for most functional assignments. These methods contribute to protein analysis both in themselves and in conjunction with sequence-based and structure-based methods for homology identification. As discussed above, identification of low-complexity regions is the standard preliminary step in sequence similarity searches, whereas prediction of the secondary structure elements is a prerequisite for some methods of threading introduced below. 

4.4.2.1. Coiled-coil domains

Because of the critical importance of appropriate treatment of low complexity sequences for similarity searches, these were already introduced and briefly discussed in section 4.    . Coiled-coil domains are a distinct class of non-globular protein structures; coiled coils are -superhelices characterized, at the sequence level, by 7-mer periodicity of hydrophobic residues, largely leucines. Recognition of such periodicity is the basis of the coiled-coil recognition algorithm developed by Andrey Lupas and implemented in the COILS program (http://www.ch.embnet.org/software/COILS_form.html [Lupas, 1997 #592; Lupas, 1996 #591; Lupas, 1996 #593]. Other methods for coiled-coil prediction are Parcoil (http://nightingale.lcs.mit.edu/cgi-bin/score) [Berger, 1995 #1068] ) and Multicoil (http://gaiberg.wi.mit.edu/cgi-bin/multicoil.pl) [Wolf, 1997 #1069] developed by Peter S. Kim and colleagues at MIT. 

4.4.2.2. Secondary structure

Prediction of the secondary structure of a protein in itself gives little indication of its function(s) or homologous relationship, but nevertheless is important in conjunction with results obtained by other methods. Protein evolution proceeds largely through insertions and deletions in unstructured parts of a domain (loops), whereas secondary structure elements tend to be conserved. Therefore reliable prediction of these elements helps correctly aligning distantly related proteins and revealing subtle sequence similarities that otherwise could have been missed. Sequence-based secondary structure prediction is a well-developed area with a large number of competing methods (Table 4.12). The classic early methods, such as those of Chow-Fasman and Garnier and coworkers, used amino acid residue propensities calculated from 3D structures to predict the most likely structural state for each sequence segment. The modern methods, such as PHD, employ neural networks that, again, train on the available database of protein structures. Most of the prediction methods partition the protein sequence into one of the three states: -helix, -sheet, and loop and achieve accuracy 70-75% accuracy. Several popular programs, such as PHD and  PREDATOR, can accept a multiple alignment as an input, which facilitates identification of conserved structural motifs and notably increases the prediction accuracy. Other programs, such as PSIPRED and Jnet, would take a single sequence as an input, run PSI-BLAST with this sequence as query, and use the alignment generated after three iterations of PSI-BLAST for secondary structure prediction. In addition to generating the structural assignment (-helix, -sheet, or a loop) for each amino acid residue, some programs also provide numerical measures of the confidence of prediction. Different secondary structure prediction programs utilize different approaches and often generate conflicting predictions. Therefore it is advisable to attempt prediction with two or three different tools and compare the results. To simplify this task, some servers offer simultaneous submission of the given protein sequence to several different programs. 

The JPred server (http://jpred.ebi.ac.uk), developed by Geoff Barton and colleagues at the EBI (currently at the University of Dundee), simultaneously runs PHD, Predator, DSC, NNSSP, ZPred, Mulpred, Jnet, COILS, and MultiCoil programs [Cuff, 1998 #848]. Another convenient site is the PredictProtein server (http://cubic.bioc.columbia.edu/pp/), maintained by Burkhard Rost at the Columbia University Bioinformatics Center, and mirrored on numerous web pages.  In addition to sending the input sequence to Jpred, PredictProtein also submits it to Prof, PSIpred, PSSP, SAM-T99, and SSPro programs (see Table 3.12) for secondary structure prediction and to DAS, TMHMM, and TopPred programs (Table 3.9) for prediction of transmembrane segments. However, while the Jpred server runs different programs locally and generates a consensus prediction, PredictProtein does not run other programs by itself. As a result, the user receives separate E-mail messages with outputs from each server used and has to combine their results. The NPS@ server at Pôle Bio-Informatique Lyonnais in Lyon, France (http://pbil.univ-lyon1.fr/) provides access to PHD and Predator, as well as several other prediction tools, such as GORI, GORIII, GORIV, and SIMPA96 by Jean Garnier and colleagues [Garnier, 1978 #1082; Gibrat, 1987 #1083; Garnier, 1996 #1084; Levin, 1986 #1085; Levin, 1997 #1087], HNN and MLRC by Yann Guermeur and 

Table 4.11. Servers for secondary structure prediction with multiple methods

	Server 
	Author(s), WWW site
	Comment
	Ref.

	Jpred 
	James Cuff, Geoff Barton, http://jpred.ebi.ac.uk
	Provides access to seven different programs and presents the results in a convenient and easy-to-compare format
	[Cuff, 2000 #838]

	Predict Protein 
	Burkhard Rost, http://cubic.bioc.columbia. edu/predictprotein
	Allows sending the sequence to other servers, which all report the results separately 
	[Rost, 1993 #155; Rost, 1993 #205]

	NPS@
	Http://pbil.univ-lyon1.fr/
	Provides convenient access to several programs
	Top of Form

Bottom of Form


colleagues [Guermeur, 1999 #820; Guermeur, 1999 #819], and SOPM and SOPMA by Geourjon and Deleage [Geourjon, 1994 #1089; Geourjon, 1995 #1088]. Like Jpred, the NPS@ server runs all these programs on its own and allows generation of a single consensus prediction [Combet, 2000 #1090].

Despite their convenience, the “meta-servers” do not cover the whole diversity of the existing methods for secondary structure prediction.  Additional servers that run individual prediction programs are listed in Table 4.12. 

Table 4.12.  Software tools for secondary structure prediction 

	Program 
	Author(s), WWW site
	Comment
	Ref.

	PHDsec 
	Burkhard Rost http://cubic.bioc.columbia. edu/predictprotein
	Probably the most popular current program, part of the PredictProtein server. 
	[Rost, 1993 #155; Rost, 1993 #205]

	PSIpred
	David T. Jones http://bioinf.cs.ucl.ac.uk/ psipred/
	Runs three iterations of PSI-BLAST with the submitted sequence. Fails if there are no homologs in the database.
	[Jones, 1999 #828]

	Predator
	Dmitry Frishman http://bioweb.pasteur.fr/ seqanal/structure/
	Also available through  Jpred, PredictProtein, and NPS@ servers 
	[Frishman, 1997 #821; Frishman, 1997 #822]

	Target99
	Kevin Karplus http://www.cse.ucsc.edu/research/compbio/ HMM-apps/
	Performs iterated search against a library of HMMs of proteins with known 3D structures
	[Karplus, 1998 #852; Karplus, 2001 #853]

	SSP, NNSSP
	Victor Solovyev http://genomic.sanger.ac. uk/pss/pss.shtml
	Both programs accept single sequences or user-defined multiple alignments
	[Solovyev, 1994 #1072; Salamov, 1995 #1073; Salamov, 1997 #1074]

	Jnet
	James Cuff, Geoff Barton http://jpred.ebi.ac.uk
	Part of the Jpred server
	[Cuff, 2000 #838]

	SSpro, SSpro8 
	Gianluca Pollastri, Pierre Baldi     http://promoter.ics.uci.edu /BRNN-PRED
	In addition to the -helix and -strand, SSpro8 also seeks to predict 310-helix,   -helix, -bridge, turn, and bend structures 
	[Baldi, 1999 #851; Pollastri, 2002 #1077]

	nnPredict
	Donald Kneller http://www.cmpharm.ucsf. edu/~nomi/nnpredict.html
	???
	Top of Form

Bottom of Form

	PSA
	James White, Collin Stultz http://bmerc-www.bu.edu/ psa
	???
	[Stultz, 1993 #826; White, 1994 #827]

	PSSP, APSSP
	G. P. S. Raghava http://imtech.ernet.in/ raghava/apssp 
	
	[Raghava, 2000 #1081]

	DSC
	Ross D. King http://bioweb.pasteur.fr/seqanal/structure/
	
	Top of Form

Bottom of Form

	Prof
	Mohammed Ouali http://www.aber.ac.uk/ ~phiwww/prof
	
	[Ouali, 2000 #824]

	HNN
	Yann Guermeur,  http://npsa-pbil.ibcp.fr/ NPSA/npsa_hnn.html
	
	[Guermeur, 1999 #820]

	MLRC
	Yann Guermeur  http://npsa-pbil.ibcp.fr/ NPSA/npsa_mlr.html
	
	[Guermeur, 1999 #819]

	ZPred MulPred
	Markéta Zvelebil http://kestrel.ludwig.ucl.ac.uk/zpred.html
	Would not accept a single sequence; takes alignments  in a rather obscure format
	[Zvelebil, 1987 #856]


4.4.2.4. Combination and hierarchy of prediction methods


Obviously, to characterize a proteins, it is necessary to combine predictions of a variety of structural features, for which purpose the methods outlined above are used. When applying them, one needs to take into account that different predictions may  overlap, with a more specific one being  subsumed and obscured by a more general one. Specifically, signal peptides may mask as transmembrane segments, whereas the both transmembrane segments and coiled coil domains may be given the inappropriately general label of low complexity sequences. To avoid such clash between different predictions, it is necessary to establish priority (hierarchy) in which they apply, with the more specific predictions given higher priority. The following priority order appears reasonable: signal peptide > transmembrane segment > coiled coil > low complexity. Secondary structure, which provides a complementary description of a protein sequence (a transmembrane segment is, at the same time, an helix), is usually predicted separately.  This priority system has to be kept in mind when analysis is done manually, but ordering of prediction methods is also implemented (among software tools familiar to us) in the SMART server and in the UNIPRED program of the SEALS package. 


Just like with sequence similarity analysis methods, structural prediction needs to be scaled up for the purpose of genome analysis, and this requires local implementation. Most of the researchers who support the servers mentioned above will readily provide their code and/or executables. 

4.4.3.  Threading 

Protein sequence-structure threading (known simply as threading) is a family of computational approaches which attempt to identify the 3D structure, among the experimentally determined ones, which is best compatible with the sequence of a given proteins. Metaphorically, a sequence is “threaded” (hence the name for this calss of techniques) through a variety of structures and the method determines which fit better than others. The underlying idea is already well familiar to us: protein structural fold is more conserved in evolution than sequence. Therefore, at least in principle, it should be possible to predict that a given sequence assumes a particular fold even when there is no significant sequence similarity between the analyzed protein and any protein with a known structure. Generally, threading methods involve calculating residue contact energy for the analyzed sequence superimposed over each structure in the database and ranking the structures by deceasing energy; the structure with minimal energy is the winner (e.g. [Bryant, 1995 #1347][Jones, 1996 #1351][Miyazawa, 1999 #1346][Zhang, 2000 #1345]). Several statistical models to estimate the probability of “native” fold detection have been developed (e.g. [Bryant, 1995 #1347][Sunyaev, 1997 #1350][Mirny, 2000 #1349]). It has been consistently reported that combining the traditional energy-function-based threading with the use of sequence profiles and secondary structure alignment leads to a substantially greater success rate of fold recognition than either threading or profile searches or secondary structure comparisons alone [Jones, 1999 #1352; Panchenko, 1999 #1354; Panchenko, 2000 #1355; McGuffin, 2002 #1353]. 

Any further discussion of threading is beyond the scope of this book; a detailed review of the physical theory behind threading methods has been published recently [Mirny, 2001 #1348]. However, before ending this brief section with a list of threading software tools that are available on the web, we feel obliged to add a cautionary note based on our own research experience. The reported success of threading notwithstanding, in our studies of a variety of protein families, we failed to detect any demonstrably relevant relationships beyond what we already identified by extensive, largely PSI-BLAST-based sequence analysis, by using several different threading methods. In contrast, we faced numerous false leads that were associated with apparently statistically significant scores. We are relating this experience not to question the benchmarking reports indicative of impressive performance of threading in fold recognition, but to suggest that the current threading approaches may still not be robust enough to make them suitable tools for systematic use in comparative genomics. 

Some of the more popular threading tools accessible through the web are listed in Table 4.13. The Structure Prediction Meta Server (http://bioinfo.pl/meta), maintained by Leszek Rychlewski and colleagues at BioInfoBank in Poznan, Poland [Bujnicki, 2001 #1101], is a good portal to threading. This server performs sequence similarity searches against proteins from nr and PDB and runs several popular threading programs, including SAM-T99, InBGU, FUGUE, GenThreader, 3D-PSSM, Superfamily, FFAS). In addition, it offers a consensus prediction through the Pcons tool (http://www.sbc.su.se/~arne/pcons, [Lundstrom, 2001 #1100]. 

Table 3.13.  Software tools for protein threading 

	Program 
	Author(s), WWW site
	Commentsa
	Ref.

	SAM-T99
	Kevin Karplus http://www.cse.ucsc.edu/ research/compbio/HMM-apps/
	Performs an iterated search against a library of HMMs, then builds a new HMM to search the PDB. 
	[Karplus, 1998 #852; Karplus, 2001 #853]

	InBGU
	Daniel Fischer, http://www.cs.bgu.ac.il/ ~bioinbgu/
	Compares sequence profiles for the query and for the proteins of different folds. Combines five different methods to produce a consensus prediction 
	[Fischer, 1996 #1114]

	UCLA/DOE Fold Server
	Tom Holton, David Eisenberg, http://fold.doe-mbi.ucla.edu/
	Same as the server at InBGU, but uses a different fold library; linked to a motif-based fold recognition server
	[Mallick, 2000 #1112; Salwinski, 2001 #1111]

	GenThreader
	David Jones, http://bioinf.cs.ucl.ac.uk/ psipred/
	Runs three iterations of PSI-BLAST with the submitted sequence and uses the resulting profile as query. Fails if there are no homologs in the database.
	[Jones, 1999 #828]

	3D-PSSM
	Lawrence Kelley, Robert MacCallum, Michael Sternberg http://www.sbg.bio.ic.ac.uk/ ~3dpssm/
	Compares 1D and 3D profiles coupled with secondary structure and solvation potential. 
	[Kelley, 2000 #1108]

	FFAS
	Lukasz Jaroszewski, Weizhong Li, Adam Godzik, http:// bioinformatics.ljcrf.edu/ FFAS/
	Uses PSI-BLAST to find homologs, then creates a sequence profile and compares it with sequence profiles of protein families in PDB
	[Rychlewski, 2000 #1107]

	FUGUE
	Jiye Shi,  Tom Blundell,       Kenji Mizuguchi     http://www-cryst.bioc.cam.ac. uk/~fugue/
	Searches the query sequence against the library of structure-based sequence alignments. Creates either a global or a global-local alignment, depending on the difference in sequence length. Features environment-specific substitution tables and variable gap penalties
	[Shi, 2001 #1106]

	SUPER FAMILY
	Julian Gough, Cyrus Chothia http://stash.mrc-lmb. cam.ac.uk /SUPERFAMILY/
	Compares the query sequence against a library of HMMs, specific for SCOP superfamilies (each superfamily can be covered by one or more HMMs). 
	[Gough, 2001 #1104; Gough, 2002 #1103]

	LOOPP
	Jarek Meller, Ron Elber http://ser-loopp.tc.cornell.edu/ loopp.html
	Performs a comparison of pairwise and profile-based alignments with and without gaps to design optimal scoring functions for each particular case
	[Meller, 2001 #1105]

	123D,   123D+
	Nickolai Alexandrov http://genomic.sanger.ac.uk/ 123D/123D.html  or http://123d.ncifcrf.gov/
	Threads the NNSSP-generated secondary structure prediction through a library of backbone assignments. Allows the user to choose the type of alignment (local or global), the substitution matrix, and gap penalty 
	[Alexandrov, 1996 #1122; Alexandrov, 1998 #1121]

	RPFOLD
	G.P.S. Raghava, http://www. imtech.res.in/ raghava/rpfold/
	Combines a sequence similarity search with a Clustal-based alignment of the secondary structure elements 
	-

	
	
	
	


Summary and Outlook

The methodological armory of computational biology has been evolving at a substantial rate for only 20 years, but has already reached impressive diversity, which would make it impossible to present it properly even if we devoted the entire book to this subject alone. In this chapter, we attempted to briefly discuss just those methods that, in our understanding, are central to comparative genomics. These are: i) gene prediction, ii) sequence similarity analysis and in particular database search, including iterative methods based on PSSMs and HMMs, and iii) prediction of protein structural features. We believe that, at the time of this writing (middle of 2002), sequence similarity analysis, along with comparison of 3D structures, remains the main source of biologically important discoveries and predictions made by computational biologists. We tried to show that some of these finding may be distinctly non-trivial. In the next chapter, we discuss how these methods work when applied to genome comparison and also present some new approaches that more explicitly rely on the information that can be extracted only from (nearly) complete genome sequences. 

Chapter  VIII. 

Phylogenomics of Central Metabolic Pathways

One of the central goals of fuctional genomics is the complete reconstruction of the metabolic pathways of the organisms for which genome sequences have been obtained. As discussed in Chapter I, there is no chance that all necessary biochemical experiments are done in any substantial number of organisms. Therefore reconstructions made through comparative genomics combined with synthesis of the knowledge obtained with model systems are the only realistic path to a satisfactory understanding of the biochemical diversity of life and to the characterization of poorly studied and hard-to-grow organisms such as, for example, the syphilis spirochete T. pallidum [Fraser, 1998 #17; Weinstock, 1998 #78]. 

In the pre-genomic era, metabolic reconstruction might have seemed to be a relatively easy task given the overall similarity of the key metabolic enzymes in several model organisms, such as E. coli, B. subtilis, yeast, plants, and animals. Although cases of non-orthologous (unrelated or distantly related) enzymes catalyzing the same reaction, such as the two distinct forms of fructose-1,6-bisphosphate aldolases, phosphoglycerate mutases, and superoxide dismutases, were known for a long time, these cases were generally perceived as rare and, more or less, inconsequential [Marsh, 1992 #460; Doolittle, 1994 #11; Galperin, 1998 #18; Galperin, 1998 #104]. The availability of complete genomes is gradually changing this perception, making us realize just how common these cases of analogous (as opposed to homologous) enzymes are in nature. During an attempt to delineate the minimal set of common proteins encoded in the first two completed genomes, H. influenzae and M. genitalium (see Chapter 6), at least 11 instances were identified where the same reaction was catalyzed by non-orthologous enzymes [Mushegian, 1996 #113].  An analysis of archaeal genomes revealed many more such cases (see Table 4.3). This phenomenon of non-orthologous gene displacement (♦2.2.5) turned out to be a major complication (but, at the same time, a major source of unexpected findings!) for the analysis of metabolic pathways, making it particularly hard to automate. Indeed, whenever an ortholog of a particular metabolic enzyme from the model organisms is not detected in the organism of interest (the initial step of metabolic reconstruction, the identification of orthologs of known enzymes, can be automated almost completely), the process turns into a “detective work”. The researcher needs to identify a set of gene products that, on the basis of their predicted biochemical activities, potentially could catalyze the reaction in question. Often, there is more than one such candidate, and the choice between these may not be possible without direct experiments. Furthermore, there is always a chance that, however plausible, all candidates detected in such searches are false, whereas the true culprit is a complete unknown. This makes metabolic reconstruction in the era of comparative genomics a less precise, but much more exciting undertaking.

In this chapter, we show how a COG-based reconstruction of bacterial and archaeal metabolism helps organizing the existing data on microbial biochemistry, illuminates the remaining questions, suggests candidate enzymes for some of the "missing" enzymes, and predicts the existence of novel enzymes still to be discovered. For each metabolic reaction, we list the COGs that are known to catalyze this reaction or can be reasonably predicted to do so.  We than compare the phyletic patterns of the corresponding COGs to see if the current set of COGs is sufficient to suggest candidate proteins to catalyze the given reaction in every genome or there are still unexplained gaps.  In addition to the COG database (http://www.ncbi.nlm.nih.gov/COG), we often refer to three other databases that aim at the metabolic reconstructions for organisms with completely sequenced genomes: BioCyc (http://www.biocyc.org), KEGG (http://www.genome.ad.jp/kegg/kegg.html), and WIT (http://wit.mcs.anl.gov), see ♦3.6.3.

8.1.  Reconstruction of Carbohydrate Metabolism

8.1.1.  Glycolysis

We already used the COG approach to demonstrate the complementarity of phylogenetic patterns of the three forms of phosphoglycerate mutase (♦2.6).  Figure 8.1 lists the COGs that are known or predicted to include glycolytic enzymes and shows their phyletic patterns. This superposition of COGs and metabolic pathways provides a convenient framework for a detailed analysis of the phylogenetic distribution of each of the glycolytic enzymes and allows one to make conclusions on the general principles of the carbohydrate metabolism. Thus, it is clear from this figure that R. prowazekii, an obligate intracellular parasite and a relative of the mitochondria [Andersson, 1998 #1], does not encode a single glycolytic enzyme. In contrast, all other organisms with completely sequenced genomes encode enzymes of the lower (tri-carbon) part of the pathway. This supports the notion of glycolysis as a central pathway of carbohydrate metabolism and makes the comparative analysis of variants of this pathway all the more interesting. 

Glucokinase (EC 2.7.1.2 ) 

Fermentation of glucose starts from its phosphorylation, which is catalyzed by glucokinase. Although many bacteria bypass the glucokinase step by phosphorylating glucose concomitantly with its uptake by the PEP-dependent phosphotransferase system, some of them, including E. coli, encode a glucokinase (COG0837) that shares little sequence similarity with yeast and human enzymes. There is also another bacterial form, found in S. coelicolor, Bacillus megaterium, and other bacteria [Angell, 1992 #992; Spath, 1997 #993]. 

Recenty, P. furiosus has been reported to encode an ADP-dependent glucokinase [Kengen, 1995 #656]. This enzyme has no detectable sequence similarity to any other glucokinase, but has clear structural similarity with enzymes of the ribokinase family [Ito, 2001 #788]. In retrospect, several conserved motifs were detected in this new glucokinase and the ribokinase family proteins, which is indicative of a homologous relationship, making it a clearcut case of non-orthologous gene displacement. So far, this enzyme has been found only in M. jannaschii and in pyrococci. The existence of at least three distinct forms of glucokinase is remarkable, especially given that this is apparently not an essential component of glycolysis. Moving down the glycolytic pathway, we find similar examples of non-orthologous gene displacement for several other, essential enzymes. 

Glucose-6-phosphate isomerase (EC 5.3.1.9).

Bacteria and eukaryotes encode several distinct but homologous forms of glucose-6-phosphate isomerase (phosphoglucomutase) [Nowitzki, 1998 #774].  The classical (E. coli) form of the enzyme is found in gram-negative bacteria and in the cytoplasm of the eukaryotic cell. A divergent version of this enzyme is found in gram-positive bacteria (including B.subtilis), T. maritima, and some of the archaea such as M. jannaschii and Halobacterium sp. [Selkov, 1997 #156; Koonin, 1997 #31]. The most divergent members of this family of glucose-6-phosphate isomerases was found in A. aeolicus and another subset of archaea, including M. thermoautotrophicum, A. pernix and Thermoplasma spp. No enzyme of this family was detected in A. fulgidus or pyrococci. Instead, P. furiosus has been recently shown to encode a novel glucose-6-phosphate isomerase which has a highly conserved ortholog in P. horikoshii (PH1956) and in A. fulgidus (AF1494) but so far not in any other organism [Hansen, 2001 #660]. Thus, two non-orthologous (in fact, apparently unrelated) major variants of this enzyme together account for the phosphoglucomutase activity in all known microbial genomes, with the exception of R. prowazekii and U. urealyticum. The former does not encode any glycolytic enzymes, whereas the latter apparently obtains fructose-6-phosphate by importing fructose concomitantly with its phosphorylation through the fructose-specific phosphotransferase system, bypassing the phosphoglucomutase stage altogether.  

Phosphofructokinase (EC 2.7.1.11). 

The next glycolytic enzyme, phosphofructokinase, offers an even more interesting example of non-orthologous gene displacement. It is also an example of an enzyme where the known forms do not cover the whole phylogenetic spectrum and there is a good chance of discovering a new form. 

The most common version of this enzyme, PfkA, is an ATP-dependent kinase of unique structure found in bacteria and many eukaryotes. Plants 
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Figure 8.1. Distribution of glycolysis (Embden-Meyerhoff-Parnas pathway) enzymes in organisms with completely sequenced genomes. Each rectangle shows a glycolytic enzyme, denoted by its gene name and the COG number. Alternative enzymes catalyzing the same reaction are shown side-by-side. Each COG is accompanied by its the phyletic pattern (see ♦2.1.4). The species abbreviations are as in Fig. 2.6. 

have a homologous enzyme, which, however, uses pyrophosphate as the phosphate donor. Altogether, homologs of PfkA are found in nearly all bacteria and eukaryotes, but are conspicously missing in H. pylori and in every archaeal genome sequenced so far.  In addition, E. coli encodes a second phosphofructokinase, PfkB, which is unrelated to PfkA and instead belongs to the ribokinase family of carbohydrate kinases. 

A unique ADP-dependent phosphofructokinase has been described in P. furiosus [Tuininga, 1999 #663]. However, this enzyme appears to have a limited phyletic distribution: so far, it was found only in M. jannaschii and in pyrococci.  This left the phosphofructokinase activity in other archaea unaccounted for and suggested that additional forms of this enzyme might exist. Very recently, a new ATP-dependent phosphofructokinase, which is a member of the ribokinase family but is not specifically related to PfkB, has been identified in A. pernix [Ronimus, 2001 #777].  Close homologs of this protein (APE0012) were found in Halobacterium sp., A. fulgidus, M. thermoautotrophicum, and several other archaea. Therefore it seems likely that these ribokinase family enzymes proteins account for the phosphofructokinasehas activity in all those archaea. Finally, Thermoplasma does not encode orthologs of any of the four forms of phosphofructokinase described above. This leaves two possibilities: either thermoplasmas lack phosphofructokinase altogether (along with fructose-1,6-bisphosphate aldolase; see below) or they have yet another, fifth variant of this enzyme.

Fructose-1,6-bisphosphate aldolase (EC 4.1.2.13). 

For more than 50 years now, it has been known that fructose-1,6-bisphosphate aldolase can be found in two different forms, a metal-independent one (class I) in multicellular eukaryotes and a metal-dependent one (class II) variant in bacteria and yeast [Warburg, 1943 #782; Marsh, 1992 #460; Doolittle, 1994 #11].  Certain organisms, such as Euglena, seem to have enzymes of both classes. Although these two enzyme forms have similar structures, they do not share any detectable sequence similarity [Galperin, 2000 #218]. 

Sequence analysis of archaeal genomes and genomes of chlamydia genomes showed that they encode neither a typical class I enzyme, nor a typical class II enzyme. Instead, chlamydia and all archaea with the exception of thermoplasmas encode orthologs of the recently described class I aldolase DhnA (FbaB) of E. coli, which is only distantly related to the regular class I enzymes and may be considered a third class of aldolases. Recently, fructose-1,6-bisphosphate aldolase activity was demonstrated in the P. furiosus homolog of DhnA; this enzyme was referred to as a class IA aldolase [Siebers, 2001 #661].  The phyletic patterns for the bacterial-type class II aldolase (COG0191) and the DhnA-type aldolase (COG1830) are almost complementary with the exception of the presence of both types of aldolase in E. coli and A. aeolicus and the absence of either of them in X. fastidiosa (Fig. 3.1). X. fastidiosa, a plant pathogen, encodes a eukaryotic class I aldolase, which is specifically similar to the plant class I aldolase, and probably was acquired through lateral gene transfer. However, typical eukaryotic (class I) fructose-1,6-bisphosphate aldolase is also encoded in several other bacteria, in which cases the underlying evolutionary scenario is lass clear. 

Although most genomes encode encode only one type of fructose-1,6-bisphosphate aldolase, different forms of this enzyme do coexist in several organisms. In particular, the relatively large genome of the plant symbiont M. loti happens to encode all three classes of fructose-1,6-bisphosphate aldolases. 

The nature of aldolase, if any, in thermoplasmas remains enigmatic. The apparent absence in these archaea of both phosphofructokinase and fructose-1,6-bisphosphate aldolase might indicate that splitting hexoses into trioses in these organisms proceeds exclusively through the Entner-Doudoroff pathway. Alternatively, thermoplasmas might have so far uncharacterized versions of these enzymes.  

Lastly, given that chlamydiae are important human pathogens and that the unusual class IA fructose-1,6-bisphosphate aldolase is the only aldolase encoded in their genomes, this presumably essential enzyme might be a promising target for anti-chlamidial drug therapy (♦9.1) [Galperin, 2000 #218; Galperin, 1999 #219].  

Triose phosphate isomerase (EC 5.3.1.1).

Triosephosphate isomerase is conserved in all organisms, with the exception of Rickettsia. Bacterial-eukaryotic and archaeal forms of this enzyme form two clearly separated clusters [Fothergill-Gilmore, 1993 #800]. This gave rise to the notion that eukaryotic triosephosphate isomerases originated from the promitochondrial endosymbiont whose genes have been transferred into the nucleus of the eukaryotic host [Keeling, 1997 #802].

Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12).

Like triosephosphate isomerases, archaeal glyceraldehyde-3-phosphate dehydrogenases are homologous to those from bacteria and eukaryotes, but form a well-defined cluster, suggesting the mitochondrial origin of this enzyme in eukaryotes.  In pyrococci and, probably, several other archaea, the main glycolytic flow goes through a different enzyme, glyceraldehyde-3-phosphate:ferredoxin oxidoreductase, whereas glyceraldehyde-3-phosphate dehydrogenase appears to be confined to gluconeogenesis [Mukund, 1995 #654; van der Oost, 1998 #657].

In U. urealyticum, the typical NADH-dependent glyceraldeldehyde-3-phosphate dehydrogenase is missing and this reaction is apparently catalyzed by a non-phosphorylating NADP-dependent enzyme, similar to the well-characterized enzymes from plants and Streptococcus mutans [Marchal, 2001 #980; Habenicht, 1994 #982]. These enzymes belong to a large superfamily of NADP-dependent aldehyde dehydrogenase and are unrelated to the phosphorylating glyceraldeldehyde-3-phosphate dehydrogenase [Michels, 1994 #983]. Remarkably, an archaeal member of the non-phosphorylating glyceraldeldehyde-3-phosphate dehydrogenase family uses NAD instead of NADP [Brunner, 1998 #981].

Phosphoglycerate kinase (EC 2.7.2.3)

Like triosephosphate isomerases and glyceraldehyde-3-phosphate dehydrogenases, phosphoglycerate kinase is conserved in all organisms that have glycolysis, and the sequences from bacteria and eukaryotes are closer to each other than they are to their archaeal counterparts, suggesting the mitochondrial origin of this enzyme in eukaryotes [??? ]. 

Phosphoglycerate mutase (EC 5.4.2.1). 

The diversity of phosphoglycerate mutases was discussed earlier (♦2.2.6). We would only like to reiterate that there are two unrelated forms of this enzyme, 2,3-bisphosphoglycerate-dependent (animal-type) and 2,3-bisphos-phoglycerate-independent (plant-type), either one of which (or both) can be found in various bacteria [Carreras, 1982 #787]. Although E. coli pgm mutants devoid of its principal (cofactor-dependent) form of phosphoglycerate mutase clearly exhibit a mutant phenotype, a recent study of the second (cofactor-independent) form of this enzyme showed that it accounts for as much as 10% of the total phosphoglycerate mutase activity in E. coli [Fraser, 1999 #786]. 

Remarkably, neither form of phosphoglycerate mutase is encoded in any archaeal genome available to date with the sole exception of Halobacterium spp. that has a typical cofactor-independent enzyme, similar to the one in B. subtilis. Sequence analysis of archaeal genomes showed that they encode uncharacterized enzymes of the alkaline phosphatase superfamily, distantly related to the cofactor-independent phosphoglycerate mutase and containing all the necessary active-site residues [Galperin, 1998 #104]. These enzymes were predicted to have a phosphoglycerate mutase activity [Galperin, 1998 #104]. This prediction is supported by the structural analysis of the cofactor-independent phosphoglycerate mutase [Jedrzejas, 2000 #478; Galperin, 2001 #762] and was recently confirmed by direct experimental data [Graham, 2002 #1063; van der Oost, 2002 #1064]. This means that, like phosphofructokinase and fructose-1,6-bisphosphate aldolase, phosphoglycerate mutase is found in three different (unrelated or distantly related) variants. 

Enolase (EC 4.2.1.11).

Enolases encoded in bacterial, archaeal and eukaryotic genomes are highly conserved; phylogenetic trees for enolases show a “star topology”, which precludes any defnitive conclusions on the evolutionary trajectory of this enzyme. Pyrococci and M. jannaschii encode additional, divergent paralogs of enolase whose function(s) remains unknown. 

Pyruvate kinase (EC 2.7.1.40).

Pyruvate kinase, the terminal glycolytic enzyme, is not encoded in some bacterial (A. aeolicus, T. pallidum) and archaeal genomes (A. fulgidus, M. thermoautotrophicum). In these organisms, the pyruvate kinase function is probably performed by phosphoenolpyruvate synthase, which is capable of catalyzing pyruvate formation by reversing its typical reaction.

Pyruvate kinase, like phosphofructokinase (see above), is also missing in H. pylori. Although a ribokinase-like phosphofructokinase and phosphoenol- pyruvate synthase could be considered as possible bypasses for these enzymes, it seems more likely that glycolysis is not functional in H. pylori. In contrast, this bacterium encodes the complete set of enzymes involved in gluconeogenesis (Fig. 8.2). Such an organization of metabolism seems to make perfect sense for this bacterium, given its challenge of maintaining near-neutral intracellular pH in the highly acidic gastric environment. Sugar fermentation, resulting in intracellular production of acid, would place an additional burden on the pH maintenance mechanism, while gluconeogenesis converts organic acids into sugars and thus removes H+ from the cytoplasm. For the purposes of energy production, H. pylori apparently depends on fermentation of amino acids and oligopeptides that are produced by gastric proteolysis and are transported into the bacterial cells by ABC-type transporters. Amino acid fermentation results in alkalinization of the cytoplasm and could relieve part of the burden of pH maintenance in H. pylori.  This simple example shows that, even when seemingly plausible candidates for missing steps in a pathway can be suggested, this should be done with caution and the resulting predicted pathways should be assessed against the biological background of the respective organism.

After a string of recent publications [Hansen, 2001 #660; Ito, 2001 #788; Hansen, 2001 #660; Siebers, 2001 #661], it appears that most glycolytic enzymes have now been accounted for.  The best chances for a discovery of a new enzyme in this pathway probably lie in the verification of the prediction of archaeal phosphoglycerate mutase and in the search for a phosphofructokinase in thermoplasmas. 

8.1.2.  Gluconeogenesis

With the exception of reactions catalyzed by phosphofructokinase and pyruvate kinase, glycolytic reactions are reversible and function also in gluconeogenesis (Fig. 8.2). The reversal of the latter reaction, i.e. conversion of pyruvate into phosphoenolpyruvate, can be catalyzed by two closely related enzymes, phosphoenolpyruvate synthase and pyruvate,phosphate dikinase. The only other reaction that is specific for gluconeogenesis is the dephosphorylation of frucose-1,6-bisphosphate.  

Phosphoenolpyruvate synthase (EC 2.7.9.2)

Phosphoenolpyruvate synthase (pyruvate, water dikinase, EC 2.7.9.2) and pyruvate, phosphate dikinase (EC 2.7.9.1) catalyze two similar reactions of phosphoenolpyruvate biosynthesis 

Pyruvate + ATP + H2O = Phosphoenolpyruvate + AMP + Pi
Pyruvate + ATP +  Pi    = Phosphoenolpyruvate + AMP + PPi
and have highly similar sequences. This enzyme is widely present in bacteria, archaea, protists and plants, but is missing in animals, where PEP is synthesized from oxaloacetate in a PEP carboxykinase-catalyzed reaction. 

Phosphoenolpyruvate carboxykinase (EC 4.1.1.32 and EC 4.1.1.49)

Phosphoenolpyruvate carboxykinase exists in two unrelated forms that catalyze ATP-dependent (EC 4.1.1.49) or GTP-dependent (EC 4.1.1.32) decarboxylation of oxaloacetate: 

Oxaloacetate + ATP  = Phosphoenolpyruvate + ADP + CO2
Oxaloacetate + GTP  = Phosphoenolpyruvate + GDP + CO2
These forms show a remarkably complex phyletic distribution. The GTP-dependent form is found in animals and in a limited number of bacteria, such as Chlamydia spp., Mycobacterium spp., T. pallidum, and the green sulfur bacterium Chlorobium limicola. Among archaea, it is encoded only in the genomes of pyrococci, thermoplasmas, and Sulfolobus. In contrast, the ATP-dependent form of phosphoenolpyruvate carboxykinase is found in plants, yeast, and many bacteria. The only complete archaeal genome that has been found to encode the ATP-dependent form is that of A. pernix (Fig. 3.2). Since the typical bacterial ATP-dependent phosphoenolpyruvate carboxykinase appears to be unrelated to the GTP-dependent form found in humans, this key enzyme of central metabolism might be an interesting drug target for such pathogenic bacteria as H. influenzae and C. jejuni (see ♦9.1).

There have also been reports of a third, pyrophosphate-dependent, form of phosphoenolpyruvate carboxykinase [Takahashi, 1999 #1338], but they remain unconfirmed and no sequence so far has been identified with this form. Absent this third form, phosphoenolpyruvate carboxykinase appears to be missing in a large number of microorganisms. 

Fructose-1,6-bisphosphatase (EC 3.1.3.11). 

The best-studied form of fructose-1,6-bisphosphatase, found in E. coli, yeast, and human (COG0158), has a limited phyletic distribution: it is not encoded in the genomes of chlamydia, spirochetes, gram-positive bacteria, A. aeolicus or T. maritima. Among archaea, it is encoded only in Halobacterium sp.  A second form of this enzyme (COG1494), originally described in cyanobacteria, has been reported to function both as a fructose-1,6-bisphosphatase and as a sedo- heptulose-1,7-bisphosphatase [Tamoi, 1996 #785; Tamoi, 1998 #784].

[image: image9.png]—omp-zygvdrlb
cefghsnuj-itw

—o——m—y—— -
cefgh-nuj----
——————————— 1b
—————— ygqvdrlb

cefgh-nuj--tw
Dihydroxyacetone
phosphate
aompkzygvdrlb
cefghsnuj-itw

aompkzygvdrlb
cefghsnuj-itw

______ y---rl-

—-e--hsn-j-it-

aompkzygvdrlb
cefghsnuj-itw

d--b
-efgh--uj----

Glucose-6P

PH1956,
C0G2140

Pyi,

COG0166

Fructose-6-phosphate

MJo109
Fructose 1.6-bisphosphate

fba,
COG0191

Glyceraldehyde-3-
phosphate

tpi, COG0149

aompkzygvdrlb
1,3-Bisphosphoglycerate

pgk, COGO126

cefghsnuj-itw

3-Phosphoglycerate

cefg---u-

a-mpkz-qvd---

2-Phosphoglycerate

eno, COG0148
cefg-snujx-t-
Phosphoenolpyruvate ppsA,
COG0574 Pyruvate
P

pekA,
COG1866

aompkz-gqvdr-b

pek, -
COG1274

it

Oxaloacetate




Figure 8.2. Distribution of glyconeogenesis enzymes in organisms with completely sequenced genomes.  All details are as in Fig. 3.1. 

This form also has a limited phyletic distribution, being found in a relatively small number of bacteria (Fig. 8.2).  Although a member of this second family is encoded in B. subtilis, this organism also has a distinct form of fructose-1,6-bisphosphatase that is unrelated to the first two and is found only in several other low G+C gram-positive bacteria [Fujita, 1998 #783]. Finally, archaea encode yet another, fourth form of this enzyme that belongs to the inositol monophosphatase family and only recently has been shown to posess fructose-1,6-bisphosphatase activity [Stec, 2000 #666; Johnson, 2001 #665]. Like B. subtilis, several bacterial genomes encode members of more than one protein family, which include known or potential fructose-1,6-bisphosphatase; this makes is hard to predict which one (or more) of them actually have this function in gluconeogenesis. In contrast,  there is no clear candidate for this function in A. aeolicus, T. maritima , X. fastidiosa, Chlamydia spp., mycoplasmas, spirochetes, and thermoplasmas. While the first three of these organisms and B. burgdorferi encode enzymes of the inositol monophosphatase family, they are not closely related to the archaeal fructose-1,6-bisphosphatase (typified by the MJ0109 protein from M. jannaschii) and might represent an independent case of enzyme recruitment. Proteins that function as fructose-1,6-bisphosphatase in Chlamydia spp., Thermoplasma spp., mycoplasmas, and T. pallidum, if any, remain to be identified.

8.1.3.  Pentose phosphate shunt and Entner-Doudoroff pathway

Alternative pathways of converting hexoses into trioses, pentose phosphate shunt and Entner-Doudoroff pathway, are found in many organisms, but cannot be considered universal. Both of these pathways start from the NADP-dependent oxidation of glucose-6-phosphate into phosphogluconolacton and proceed through 6-phosphogluconate (Fig. 3.4). Instead of the standard Entener-Doudoroff pathway, some archaea encode the so-called non-phosphorylating variant of this pathway, which starts from glucose and includes unphosphorylated intermediates.

Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49)

Glucose 6-phosphate dehydrogenase (Zwischenferment) primarily uses NADP+ as the electron acceptor, although there have been reports of NAD+-dependent forms.  This enzyme is found in many bacteria and eukaryotes, but is not encoded in any of the archaeal genomes sequenced to date.  In addition, it is missing in several bacteria, such as M. leprae, B. halodurans, S. pyogenes, C. jejuni, and mycoplasmas (Fig. 8.3). 
6-Phosphogluconolactonase (EC 3.1.1.31)

Although its enzymatic activity had been characterized many years ago, the gene for the lactonase remained unidentified until very recently, due in part to the inherent instability of its substrate and in part to the fact that this activity resides in a protein that is closely related  to glucosamine-6-phosphate isomerase/deaminase and may even combine both activities [Collard, 1999 #927; Hager, 2000 #926]. In humans, lactonase is fused to the glucose-6-phosphate dehydrogenase, forming the C-terminal domain of a bifunctional enzyme.  Interestingly, in Plasmodium falciparum, the fusion partners switch places, with the lactonase at the N-terminus [Mason, 1999 #989]. The lactonase is found largely in the same set of species as glucose dehydrogenase, although it appears to be missing additionally in A. aeolicus and D. radiodurans. So what?? What are the conclusions on the pathway – where is it present, where not etc???
8.1.3.1.  Pentose phosphate shunt

6-phosphogluconate dehydrogenase (decarboxylating, EC 1.1.1.44)

6-Phosphogluconate dehydrogenase, the product of the gnd gene in E. coli, is the upstream enzyme specific for the pentose phosphate pathway. Of those organisms that encode phosphogluconate dehydrogenase (COG0362), several (M. loti, B. subtilis, L. lactis) also encode its close paralog (COG1023), whose function is still unknown, but which is likely to have the same activity. Phosphogluconate dehydrogenase has an even more narrow phylogenetic distribution than phosphogluconolactonase, being additionally absent from S. pyogenes, X. fastidiosa, H. pylori, and C. jejuni (Fig. 8.3). 

Pentose-5-phosphate-3-epimerase (EC 5.1.3.1)

The next reaction of the pentose phosphate pathway, isomerisation of ribulose 5-phosphate into xylulose 5-phosphate, is catalyzed by phosphoribulose epimerase. In addition to the pentose phosphate pathway, this enzyme also participates in the interconversions of pentose phosphates in the Calvin cycle, which accounts for its wider phyletic distribution than seen for phosphogluconate dehydrogenase. So what??
Ribose 5-phosphate isomerase (EC 5.3.1.6)

Ribose-5-phosphate isomerase, which catalyzes interconversion of ribulose 5-phosphate and ribose 5-phosphate, is found in two paralogous?? forms, both of which, RpiA and RpiB, have been characterized in E. coli. RpiA is found in many bacteria, archaea, and eukaryotes. In contrast, RpiB is limited to certain bacterial species and is the sole form of ribose-5-phosphate isomerase in B. subtilis, M. tuberculosis, H. pylori, and several other bacteria. The phyletic patterns of the two forms of the enzyme are largely complementary: 

aompkzy--d-l-cefghsn-j-it-  COG0120 RpiA
-------qv-rlbce--h--ujx--w  COG0698 RpiB

aompkzyqvdrlbcefghsnujxitw  RpiA + RpiB

Like phosphoribulose epimerase, phosphoribose isomerase participates in the Calvin cycle, which might explain its universal distribution. 

Transketolase (EC 2.2.1.1)

In eukaryotes and bacteria, transketolase is a single protein of 610-630 amino acid [Takayama, 1997 #995]. In archaea, however, this enzyme is either missing altogether (e.g. A. fulgidus, M. thermoautotrophicum) or is encoded by two separate genes that may not even be adjacent (in M. jannaschii). The hyperthermophilic bacterium T. maritima has both types of genes, one full-length and one split gene, the latter probably acquired from archaea via HGT.  Transketolase shows high sequence similarity to deoxyxylulose-5-phosphate synthase and other thiamine pyrophosphate-dependent enzymes, which might point to a broad substrate specificity of this enzyme, particularly of its thermophilic versions. 

Transaldolase (EC 2.2.1.2)

Transaldolase is a protein of 310-330 amino acid residues, which is present in eukaryotes and many bacteria and catalyzes the transfer of the tri-carbon unit of sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing fructose-6-phosphate and erythrose-4-phosphate [Takayama, 1997 #995]. Archaea and some other bacteria encode a closely related but shorter protein, about 210-230 aa long, which has recently been demonstrated to function not as transaldolase, but as fructose-6-phosphate aldolase , which splits fructose-6-phosphate into glyceraldehyde-3-phosphate and dihydroxyacetone [Schurmann, 2001 #994].  While E. coli encodes two paralogous transaldolases ( talA, talB) and two paralogs of the smaller related enzyme (talC, mipB), many other microorganisms, including B. subtilis, M. jannaschii, and Thermoplasma spp., encode only the latter protein.  Although the exact substrate specificity of these enzymes is not known, enzymes from B. subtilis  and T. maritima have been reported to have transaldolase activity [Schurmann, 2001 #994]. Thus, different MipB orthologs could have different (prevailing) activities, which makes complete reconstruction of the pentose phosphate pathway in microorganisms harboring those enzyme unrealistic at this time.  It is clear, however, that phyloetic patterns of the enzymes of this pathway differ significantly, which suggests the existence of still uncharacterized enzyme forms.

8.1.3.2.  The Entner-Doudoroff pathway

Conversion of 6-phosphogluconate into two tri-carbon molecules, 3-phosphoglyceraldehyde and pyruvate, via the Entner-Doudoroff pathway includes just two steps, which are catalyzed by 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase (the products of E. coli genes edd and eda, respectively (Fig. 8.3).  

Phosphogluconate dehydratase (EC 4.2.1.12) 

Phosphogluconate dehydratase is a close paralog of dihydroxyacid dehydratase, an enzyme of isoleucine/valine biosynthesis, which is encoded in almost every genome As a result, it is not easy to decide which organisms encode phosphogluconate dehydratase. In E. coli and several other proteobacteria, edd and eda genes form operons.  In other organisms, such as P. aeruginosa, even though both these genes are present, they are not adjacent, which makes identification of phosphogluconate dehydratase more diificult. 

2-Keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) 

KDPG aldolase has a much more narrow phyletic distribution than phosphogluconate/dihydroxyacid dehydratase (Fig 8.3). Assuming that functional Entner-Doudoroff pathway requires the presence of both these enzymes, as well as glucose-6-phosphate dehydrogenase and phosphogluco-nolactonase, the available genomic data suggest that the pathway is limited to certain proteobacteria, T. maritima, and some gram-positive bacteria of the Bacillus/Clostridium group. 

8.1.3.3.  Non-phosphorylated variants of the Entner-Doudoroff pathway 

While the standard Entner-Doudoroff pathway starts from glucose-6-phosphate and proceeds through phosphorylated sugar intermediates, a variety of bacteria and archaea possess so-called “non-phosphorylated” variants of this pathway which all start from glucose and delay phosphorylation until later stages. The simplest variant of such modified pathway includes glucose oxidation into gluconate, followed by its phosphorylation into 6-phosphogluconate. The resulting 6-phosphogluconate rejoins the standard Entner-Doudoroff pathway. Another variant of the modified pathway includes an additional non-phosphorylated step, dehydratation of gluconate into 2-keto-3-deoxygluconate, followed by its phosphorylation. In yet another variant of this pathway, phosphorylation is delayed even further, until after splitting of 2-keto-3-deoxygluconate into two tri-carbon molecules, pyruvate and glyceraldehyde. The latter compound is then phosphorylated into 3-phosphoglyceraldehyde. Finally, phosphorylation can be delayed one step further with glyceraldehyde first oxidized into glycerate and the phosphorylated into 2-phosphoglycerate. 

Glucose 1- dehydrogenase (EC 1.1.1.47, 1.1.99.10) 

Glucose dehydrogenase, catalyzing glucose oxidation into glucono-1,5-lactone, is known in several variants, which use different electron acceptors.  Two unrelated NAD+-dependent variants of this enzyme (EC 1.1.1.47), typified by enzymes from T. acidophilum [John, 1994 #987] and Bacillus megaterium [Yamamoto, 2001 #985], belong, respectively, to the Zn-containing dehydrogenase family and to the short-chain reductases/dehydrogenases family. One more variant of glucose dehydrogenase, present in E. coli and several other bacteria, uses pyrroloquinoline quinone as the electron acceptor [Oubrie, 1999 #988]. Finally, the enzyme from Drosophila (DHGL_DROME) comprises a flavoprotein that can use a variety of electron acceptors [Cavener, 1992 #990]. This diversity suggests nothing. Distribution…whatever…it needs to be about genomics
Gluconolactonase (EC 3.1.1.17)

Only a single variant of gluconolactonase has been characterized so far [Kanagasundaram, 1992 #991]. It has a patchy and relatively narrow phylogenetic distribution (COG3386), suggesting that alternative versions of this enzyme might exist. 

Gluconate kinase (EC 2.7.1.12)

Gluconate kinase is found in two distinct versions, one unique and the other belonging to a large family of sugar kinases (Fig. 2.7)???.  This second form of gluconate kinase has probably evolved from a glycerol kinase or a xylulose kinase through enzyme recruitment (♦2.2.5). Gluconate kinases of the first type are found in yeast, D. radiodurans, E. coli and several other proteobacteria, whereas the second form of this enzyme is apparently limited to B. subtilis and a handful of other gram-positive bacteria. 
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Figure 8.3. Distribution of enzymes of pentose phosphate and Entner-Doudoroff pathways in organisms with completely sequenced genomes.  Details are as in Fig. 8.1. 

Gluconate dehydratase (EC 4.2.1.39)

Although gluconate dehydratase activity has been described in bacteria long ago [Gottschalk, 1982 #1286] and can be easily detected in archaea [Johnsen, 2001 #1285], the gene(s) for this enzyme has not been identified. E. coli, some other bacteria, and Thermoplasma spp. encode an enzyme with similar activity, D-mannonate dehydratase (EC 4.2.1.8, the product of uxuA gene), which converts mannonate into 2-keto-3-deoxygluconate. It is not known if this enzyme can use gluconate as a substrate. In any case, its narrow phyletic distribution suggests that, even if UxuA works as gluconate dehydratase in E. coli, M. loti, B. subtilis, and Thermoplasma spp., there should exist a different form of this enzyme that would participate in the non-phosphorylated Entner-Doudoroff pathway in other archaea.

2-keto-3-deoxygluconate aldolase

Although splitting of 2-keto-3-deoxygluconate into pyruvate and glyceraldehyde has been described long ago [Allam, 1975 #997], the first gene for 2-keto-3-deoxygluconate has been identified only recently in the hyperthermophilic crenarchaeon S. solfataricus. This enzyme is closely related to N-acetyl-neuraminate lyase and belongs to the same superfamily of Schiff-base-dependent aldolases [Buchanan, 1999 #667]. Enzymes of this family (COG0329) are present in all archaeal genomes sequenced so far, as well as in most bacteria. Although the exact substrate specificity of each particular member of this family is not yet clear, Thermoplasma spp. and P. abyssi encode proteins that are almost identical to the enzyme from Sulfolobus and can be confidently predicted to catalyze this reaction.

8.1.4.  The TCA cycle

The tricarboxylic acid cycle (Krebs cycle) is the central metabolic pathway that links together carbohydrate, amino acid, and fatty acid degradation and supplies precursors for various biosynthetic pathways. Remarkably, the complete TCA cycle, that has been studied in much detail in animal and yeast mitochondria, E. coli and B. subtilis, is only found in a handful of  microorganisms (Fig. 8.3). Most organisms with completely sequenced genomes encode only a certain subset of TCA cycle enzymes and, instead of performing the entire cycle, utilize only fragments of it.  Another remarkable feature is the diversity of this pathway: cases of non-orthologous gene displacement are detectable for at least five of the eight TCA cycle enzymes.  A detailed analysis of the phylogenetic distribution and evolution of the TCA cycle enzymes has been recently published by Huynen and coworkers [Huynen, 1999 #48].  Most of their conclusions remain valid, although the sequences of the genomes of two aerobic archaea, the crenarchaeon A. pernix and the euryarchaeaon Halobacterium sp., have substantially changed the notions of what can and cannot be found in archaeal genomes.  In an impressive confirmation of early biochemical results on halobacterial metabolism [Aitken, 1969 #970], both these organisms were found to encode the complete set of TCA cycle enzymes as was the microaerophile Thermoplasma spp.  A reconstruction of the TCA cycle reactions occuring in each particular organism can be a very interesting and useful project, which we recommend the readers to do on their own (see Problems).  We concentrate here exclusively on the cases of non-orthologous gene displacement. 

Citrate synthase (EC 4.1.3.7)


Citrate synthase is a highly conserved enzyme, which is encoded in most bacterial, archaeal, and eukaryotic genomes (Fig. 8.3). It serves as the principal port of entry of acetyl-CoA into the TCA cycle and, in eukaryotes, is exclusively located in mitochondria.  A very similar reaction is catalyzed by ATP:citrate lyase (EC 4.1.3.8), which contains a citrate synthase-like domain at its C-terminus.

Citrate synthase:

Oxaloacetate + Acetyl-CoA + H2O = Citrate + CoA




ATP-citrate lyase:

Oxaloacetate + Acetyl-CoA + ADP + Pi = Citrate + CoA +ATP 


However, ATP:citrate lyase has been found so far exclusively in eukaryotes, where it has a cytoplasmic localization and preferentially catalyzes the reverse reaction, citrate cleavage. 


Citrate synthase is missing in spirochetes and mycoplasmas that do not encode any enzymes of the TCA cycle. It is also missing in pyrococci, M. jannaschii, S. pyogenes and H. influenzae that encode unlinked branches of the TCA cycle (Fig. 8.4).  It has been suggested that the TCA cycle has evolved from two separate reductive branches [Romano, 1996 #1339] that were later linked by (i) citrate synthase and (ii) either an -ketoglutarate dehydrogenase or an -ketoglutarate:ferredoxin oxidoreductase [Kletzin, 1996 #1008; Mai, 1996 #1006]. In any case, due to the absence of known displacements, citrate synthase seems to be a good indicator of the ability of on an organism to use TCA cycle. 

Aconitase (EC 4.2.1.3)


There are two distantly related, paralogous aconitases, referred to as aconitase A and aconitase B, both of which are present in E. coli and many other proteobacteria (Fig. 8.4).  Aconitase A has a much wider phyletic distribution and is the form of the enzyme that is encoded in -proteobacteria M. loti, C. crescentus, and R. prowazekii. Accordingly, this is also the form of aconitase that is present in mitochondria. Although aconitase B has a much more narrow phyletic distribution, it is the only form of the enzyme encoded in Synechocystis sp., P. multocida, H. pylori, and C. jejuni. 
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Figure 8.4. Distribution of the TCA cycle enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

Aconitase is closely related to 3-isopropylmalate dehydratase, an enzyme of leucine biosynthesis (♦3.2.4.4), which sometimes makes annotation not entirely straightforward.  Nevertheless, leu genes are usually found in a conserved operon, which helps making the correct assignment. 

Isocitrate dehydrogenase (EC 1.1.1.42)
Like aconitase, isocitrate dehydrogenase is also found in two forms, which, however, appear to be completely unrelated???. The mitochondrial form of this enzyme, also found in E. coli and many other bacteria and archaea, is closely related to isopropylmalate dehydrogenase, an enzyme of leucine biosynthesis (♦3.2.4.4), and it is believed that it could have evolved from a duplicated copy of the leuB gene [Miyazaki, 1992 #969]. Again, the annotation here has to rely on the genetic context, i.e. on the presence or absence of adjacent leu genes. In any case, the product of such a gene is very likely to have both isocitrate dehydrogenase and isopropylmalate dehydrogenase activity. This form is active as a homodimer, which distinguishes it from the second form, referred to as monomeric isocitrate dehydrogenase. This second form was originally found in Vibrio sp. [Suzuki, 1995 #968] and later discovered in a number of other bacteria [Steen, 1998 #967]. It is the only form of the enzyme encoded in the genomes of M. leprae, V. cholerae, and C. jejuni.

2-ketoglutarate dehydrogenase (EC 1.2.4.2)  


In mitochondria and many aerobic bacteria and archaea, decarboxylation of -ketoglutarate into the succinyl moiety of succinyl-CoA is catalyzed by the thiamine pyrophosphate and lipoate-dependent-ketoglutarate dehydrogenase complex. In contrast, many anaerobic bacteria and archaea utilize -ketoglutarate ferredoxin oxidoreductase, an unrelated enzyme [Kletzin, 1996 #1008; Mai, 1996 #1006].

Succinyl-CoA synthetase (EC 6.2.1.4, 6.2.1.5)

Succinyl-CoA synthetases are divided into GTP-dependent and ATP dependent forms, which enzymes are closely related  paralogs. Succinyl-CoA synthetase is a member of a large family of acyl-CoA synthetases (NDP-forming) which also includes acetyl-CoA synthetase found in many archaea and lower eukaryotes. For ATP binding, these enzymes employ the ATP-grasp domain (see (7.2???). Variants of this enzyme with shifted substrate specificities are found in most phylogenetic lineages.

Succinate dehydrogenase/fumarate reductase (EC 1.3.99.1)


Mitochondrial succinate dehydrogenase, which couples the oxidation of succinate to fumarate with the reduction of ubiquinone to ubiquinol, consists of four subunits carrying three iron-sulfur centers, a covalently bound flavin and two b-type hemes (the story of the discovery of these complexes is vividly described in [Singer, 1985 #1287].  The fumarate reductase (quinol:fumarate reductase) complex also carries iron-sulfur centers and a covalently bound flavin, but usually consists of just two or three subunits. Succinate dehydrogenase is part of the aerobic respiratory chain, whereas fumarate reductase is involved in anaerobic respiration, with fumarate as the terminal electron acceptor. Accordingly, one or both of these enzymes is found in all organisms, with the exception of pyrococci, spirochetes, and mycoplasmas (Fig. 8.4).

Fumarate hydratase (fumarase, EC 4.2.1.2)

Like several other TCA cycle enzymes, fumarase is represented by two unrelated forms. The mitochondrial form of this enzyme (class II) is also encoded in many bacteria and in aerobic archaea, A. pernix and Halobacterium sp. The second form of fumarase (class I) consists of two subunits that are fused in most bacterial genomes, but are encoded by separate genes in archaea, T. maritima and A. aeolicus. The two forms of fumarase have largely complementary phyletic patterns: 

a-m-k--qv---b-efg-sn-j----  COG1951+1838Fumarase, class I

-o---zy--dr-bcefghsnujxi--  COG0114 Fumarase, class II

aom-kzyqvdrlbcefg-snuj----  Fumarase, all forms

The only archaeal genome that appears not to encode a fumarase is T. acidophilum whose fumarase-like ORF Ta0258 is much more closely related to aspartate ammonia-lyase (COG1027) than to a typical fumarase (COG0114). The actualy activity of this Thermoplasma enzyme has not been determined. 

Malate dehydrogenase (EC 1.1.1.37)

Malate dehydrogenase is found in two forms, too, with the mitochondrial form having a much wider phyletic distribution.  The second form of malate dehydrogenase was originally described in archaea [Aitken, 1969 #970; Grossebuter, 1986 #971; Bartolucci, 1987 #972] and is often referred to as the “archaeal” form of the enzyme.  However, it is encoded in certain bacterial genomes too, including three paralogous genes in E. coli (ybiC, yiaK, and ylbC) and M. loti. It is the only form of malate dehydrogenase encoded in pyrococci and in P. aeruginosa.  Remarkably, M. thermoautotrophicum encodes both forms of malate dehydrogenase [Thompson, 1998 #973], and so do, apparently, B. subtilis, H. influenzae, P. multocida and M. jannaschii seem to do the same (Fig. 8.3).  Why do these organisms, with their relatively small genomes, have two paralogous forms of this enzyme remains unclear.  In contrast,  U. urealyticum and T. pallidum do not encode either of the two forms of malate dehydrogenase, in contrast to their respective relatives M. genitalium and B. burgdorferi.  Therefore, there still remains a possibility that these organisms encode yet another, third form of this enzyme. 
8.2.  Pyrimidine Biosynthesis

In contrast to the pathways of carbohydrate metabolism discussed above, enzymes of the pyrimidine biosynthesis pathway have a fairly consistent phylogenetic pattern, although cases of non-orthologous gene displacement can be found here, too (Fig. 8.4). The whole pathway, with the exception of the last three steps, is missing in the obligate parasitic bacteria with small genomes: rickettsiae, chlamidiae, spirochetes, and mycoplasmas, whereas microorganisms with larger genomes encode all or almost all enzymes of pyrimidine biosynthesis. 

Carbamoyl phosphate synthase (EC 6.3.5.5)

In bacteria and archaea, carbamoyl phosphate synthase consists of two subunits, which in eukaryotes are fused into a single multifunctional protein CAD that additionally contains dihydroorotase and aspartate carbamoyl-transferase domains. The small subunit, encoded by the carA gene, is a typical glutamine amidotransferase of the Triad family [Zalkin, 1998 #433].  The large subunit consists of two ATP-grasp domains (♦3.3.3) fused in the same polypeptide chain [Javid-Majd, 1996 #862; Stapleton, 1996 #863; Thoden, 1997 #743].  In M. jannaschii and M. thermoautotrophicus, the large subunit is split into two proteins, which are encoded by different, albeit adjacent genes.  In addition to the obligate parasites mentioned above, carbamoyl phosphate synthase is missing in P. horikoshii, P. abyssi, Thermoplasma spp., and H. influenzae (Fig. 8.5). It is encoded, however, in Pyrococcus furiosus, suggesting a relatively recent loss of this enzyme in the other two pyroccocci. In P. abyssi, carbamoyl phosphate biosynthesis is carried out by an unrelated form of the enzyme, which is closely related to carbamate kinase [Purcarea, 1996 #998; Purcarea, 2001 #999]. This second form is also responsible for the carbamoyl phosphate synthase activity in P. furiosus [Durbecq, 1997 #1000; Ramon-Maiques, 2000 #1001] and might account for this activity in Thermoplasma spp.  Although both subunits of carbamoyl phosphate synthase belong to large protein superfamilies and are similar to many proteins with different substrate specificities, the sheer size of the large subunit, which typically contains more than 1050 amino acid residues, allows an easy identification of this enzyme in genome analyses. However, caution is due with respect to the annotation of any shorter proteins that give statistically significant hits to the large subunit of carbamoyl phosphate synthase: these are likely to be other ATP-grasp superfamily enzymes (see ♦7.2???).

Aspartate carbamoyltransferase (EC 2.1.3.2)

Aspartate carbamoyltransferase, the second enzyme of pyrimidine biosynthesis, has a wide distribution with a phyletic pattern that is similar to that of carbamoyl phosphate synthase, but additionally includes pyrococci and Thermoplasma spp. (Fig. 8.5). This enzyme, however, is lacking in H. influenzae and in its close relative P. multocida.  In eukaryotes, aspartate carbamoyltransferase comprises the C-terminal domain of the multifunctional CAD protein [Simmer, 1990 #808].
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Figure 8.5. Distribution of pyrimidine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

Dihydroorotase (EC 3.5.2.3)

The well-characterized form of dihydroorotase (COG0418), encoded by the E. coli pyrC gene [Backstrom, 1986 #803] and by the URA4 gene in yeast [Guyonvarch, 1988 #804], has a very limited phyletic distribution (Fig. 8.5).  In contrast, the second form of this enzyme (COG0044) is almost universal, being found in many bacteria [Quinn, 1991 #809], archaea, and eukaryotes. In eukaryotes, this enzyme forms the middle portion of the multifunctional protein CAD [Simmer, 1990 #808; Zimmermann, 1993 #807]. In yeast, however, this domain is apparently inactive [Souciet, 1989 #806], most likely because of the presence of the alternative form of dihydroorotase. Just as aspartate carbamoyltransferase, neither form of dihydroorotase is encoded in H. influenzae or P. multocida. Notably, the union of the phyletic patterns for the two forms of dihydroorotase is identical to the phyletic pattern of aspartate carbamoyl-transferase: 

------y------cefg--nu-----  COG0418  Dihydroorotase 

aompkzyqvdrlbcef--s-uj----  COG0044  Dihydroorotase 

aompkzyqvdrlbcefg-snuj----  All forms   Dihydroorotase 

aompkzyqvdrlbcefg-snuj----  COG0540  Aspartate carbamoyl-

transferase 

Dihydroorotate dehydrogenase (EC 1.3.3.1)

Dihydroorotate dehydrogenase displays the same phylogenetic pattern as dihydroorotase and aspartate carbamoyltransferase, with the addition of H. influenzae and P. multocida. Both these organisms encode the enzymes for all downstream steps of pyrimidine biosynthesis.

Orotate phosphoribosyltransferase (EC 2.4.2.10)

The phyletic pattern of orotate phosphoribosyltransferase differs from that of dihydroorotate dehydrogenase in only one respect, presence of a pyrE-related gene in C. pneumoniae. The function of its product in C. pneumoniae is unknown, but given the absence in this organism of the enzymes for the preceding and the following steps of the pathway, it is unlikely to function as orotate phosphoribosyltransferase.  Rather, it might be recruited to catalyze a different phosphoribosyltransferase reaction. In eukaryots, orotate phosphoribosyltransferase is fused to the next enzyme of the pathway, OMP decarboxylase, forming a two-domain UMP synthase. As a result, orotate phosphoribosyltransferase and OMP decarboxylase are occasionally mis-annotated as UMP synthases and vice versa [Galperin, 1998 #464].

Orotidine-5'-monophosphate decarboxylase (EC 4.1.1.23)
Although the phyletic pattern of OMP decarboxylase is identical to that of dihydroorotate dehydrogenase, a closer look at this COG reveals that it consists of three distantly related families. Two of them include well-characterized enzymes from E. coli and other bacteria [Turnbough, 1987 #810] and from yeast and other eukaryotes [Floyd, 1985 #811;  Miller, 2000 #812]. The third family includes OMP decarboxylases from archaea and a small number of bacteria, such as M. tuberculosis, M. leprae, and Myxococcus xanthus [Kimsey, 1992 #813; Aldovini, 1993 #814].  Mycobacterial OMP decarboxylases seem to be sufficiently distinct from those in eukaryotes and other bacteria to consider them promising targets for antituberculine drugs [Galperin, 1999 #219]. 

Uridylate kinase (EC 2.7.4.-, 2.7.4.14) 

There seem to be two distinct forms of uridylate kinase: one specific for UMP and found in bacteria and archaea (COG0528) and the second one that phosphorylates both UMP and CMP and found in eukaryotes [Okajima, 1995 #816; Sanchez, 1998 #815]. The eukaryotic form of the enzyme is closely related to bacterial adenylate kinase, and could have been recruited from an ancestral prokaryotic adenylate kinase.  The prokaryotic form of uridylate kinase is encoded in all bacterial and archaeal genomes sequenced to date, including the ‘minimal’ (see ♦6.1???) genomes of mycoplasmas and Buchnera. 

Nucleoside diphosphate kinase (EC 2.7.4.6)

Nucleotide diphosphate kinase (COG0105) is very well conserved in representatives of bacteria, archaea, and eukaryotes. Surprizingly, however, this enzyme is not encoded in T. maritima, L. lactis, S. pyogenes, and mycoplasmas. One could imagine that these organisms employ a different nucleotide diphosphate kinase that might have been recruited, just like eukaryotic uridylate kinase, from the adenylate kinase family (COG0563). This, however, would not solve the problem for T. maritima and mycoplasmas, which encode only a single enzyme of that family. It therefore seems likely that nucleotide diphosphate kinase in these organisms has been recruited from a different kinase family. Indeed, a phyletic pattern search for a protein that would be encoded in those four genomes, but not in other organisms with relatively small genomes, such as chlamydiae, spirochetes, or H. pylori, easily finds an uncharacterized (predicted) kinase related to dihydroxyacetone kinase (COG1461): 

   aompkzyqvdrlbcefghsnujxitw  Uridylate kinase (all forms) 

   aompkzyq-dr-bcefghsnujxit-  COG0105  NDP kinase 

   --------v--l-------------w  Missing NDP kinase 

   --------vdrlb------------w  COG1461  Predicted kinase

which appears to be a good candidate for the role of nucleotide diphosphate kinase in these organisms.

CTP synthase (UTP-ammonia ligase, EC 6.3.4.2)

CTP synthase is a two-domain protein, which consists of an N-terminal  nucleotide-binding synthetase domain and a C-terminal glutamine amidotransferase domain. This enzyme is extremely highly conserved in bacteria, archaea, and eukaryotes. It is missing only in the genomes of M. genitalium and M. pneumoniae, which apparently make CTP from CDP or CMP in a salvage pathway, rather than from UTP. 

Comparison of the phyletic patterns of the enzymes of pyrimidine biosynthesis reveals two interesting evolutionary trends. Firstly, there appears to be a tendency towards decreasing the genome size by losing genes that have ceased to be essential. Indeed, ample evidence indicates that mycoplasmas evolved from a Gram-positive ancestor by way of massive gene loss associated with their adaptation to parasitism.  Indeed, while bacilli, lactococci, and many other gram-positive bacteria carry the full set of genes of pyrimidine metabolism, most of the pyr genes have been lost in the mycoplasmal lineage.  The same lack of many pyr genes, presumably due to lineage-specific gene loss, can be seen in other parasitic microorganisms, such as spirochetes, rickettsiae, and chlamidiae (Fig. 8.5).

The trend towards gene loss is much more pronounced for the initial steps of the pyrimidine biosynthesis pathway than it is at for the distal steps. Thus, genes for the first three steps of pyrimidine biosynthesis from bicarbonate and ammonia to dihydroorotate (carA, carB, pyrB, and pyrC) are missing in the H. influenzae genome, but the genes for all the subsequent steps of pyrimidine biosynthesis, from dihydroorotate to CTP, are present (Fig. 8.5).  This means that, although H. influenzae is incapable of de novo pyrimidine biosynthesis, it can still synthesize UTP and CTP from dihydroorotate, orotate or OMP. Spirochetes, chlamidiae, rickettsiae, and mycoplasmas show an even deeper loss of pyrimidine biosynthesis genes, but still retain genes for the last three steps of the pathway, the conversion of UMP into CTP.  Thus, while depending on the host for the supply of essential nutrients, this strategy allows the parasite to preserve at least some metabolic plasticity. In particular, every organism seems to encode enzymes to synthesize its own nucleoside triphosphates (NTPs) by one or another pathway. The reasons why no known parasites rely on NTP import are not entirely clear because intracellular bacterial parasites do encode ATP/ADP translocases, which are capable of exchanging ADP generated by the parasite for cytoplasmic ATP [Winkler, 1999 #1357][Wolf, 1999 #1358]. It seems likely that the ability to produce NTPs makes the parasites less dependent on the host cell, which may become critical when the ppol of NTPs in the latter is depleted.

8.3.  Purine Biosynthesis

Like pyrimidine biosynthesis enzymes, enzymes of the purine biosynthesis pathway follow a consistent phylogenetic pattern, although with some inevitable complications (Fig. 8.6).  With only a few exceptions, enzymes that catalyze the common reactions of the pathway, which leads to the formation of inosine-5’-monophosphate, are missing in parasitic bacteria with small genomes, namely mycoplasmas, rickettsiae, chlamidiae, spirochetes, Buchnera sp., and H. pylori, and, interestingly, in the aerobic crenarchaeon A. pernix. Other bacteria encode the complete set of of purine biosynthesis enzymes, whereas the distribution of these enzymes in archaeal genomes is more complex and has to be discussed separately for each enzyme.

Phosphoribosylpyrophosphate synthetase (EC 2.7.6.1)

PRPP synthetase (ribose-phosphate diphosphokinase) is an enzyme that is shared by purine biosynthesis and histidine biosynthesis pathways. This enzyme is found in most completely sequenced genomes, including those of mycoplasma, spirochetes, and Buchnera, which do not encode most purine biosynthesis enzymes (Fig. 8.6).

Amidophosphoribosyltransferase (EC 2.4.2.14)

Glutamine phosphoribosylpyrophosphate amidotransferase (PurF) belongs to the N-terminal nucleophile (Ntn) family of glutamine amidotransferases [Zalkin, 1998 #433]. This enzyme is encoded in every sequenced bacterial genome, with the exception of such obligate parasites as  rickettsiae, chlamidiae, spirochetes, mycoplasmas, and H. pylori, and in every archaeal genome except for A. pernix.  The same phyletic pattern is seen in the majority of purine biosynthesis enzymes.

Phosphoribosylamine-glycine ligase (EC 6.3.4.13)

Phosphoribosylglycinamide synthetase PurD, an ATP-grasp superfamily (see ♦3.3.2) enzyme, has the same phylogenetic pattern as amidophospho-ribosyltransferase and many other enzymes of this pathway.

Phosphoribosylglycinamide formyltransferase (EC 2.1.2.2)

5'-Phosphoribosyl-N-formylglycinamide synthase (GAR transformylase) is exists in two different forms, formate-dependent (PurN) and folate-dependent (PurT), which are unrelated to each other and catalyze entirely different reactions.  The folate-dependent form functions as a transferase, catalyzing transfer of the formyl group from formyltetrahydro-folate to phosphoribosylglycinamide. This enzyme is found in many bacteria and eukaryotes, but only in a few archaea, such as Halobacterium sp. and Thermoplasma spp.  The formate-dependent form of the enzyme belongs to the ATP-grasp superfamily (see ♦3.3.2) and catalyzes an ATP-dependent ligation of phosphoribosylglycinamide with formic acid.  This is the only form of GAR transformylase in methanogens and pyrococci.  Surprizingly, neither form of the enzyme is encoded in the A. fulgidus genome. With the exception of A. fulgidus, the combined phyletic pattern of the two forms of GAR transformylase coincides with the patterns for amidophospho-ribosyltransferase and phosphoribosylamine-glycine ligase:  

-o-p--yqvdrlbcefghsnuj---- PurN  Folate-dependent form

--m-k-----r-bcefgh-------- PurT  Formate-dependent form 

-ompk-yqvdrlbcefghsnuj---- Both forms together 

aompk-yqvdrlbcefghsnuj---- PurF 

aompk-yqvdrlbcefghsnuj---- PurD 

Phosphoribosylformylglycinamidine synthase (EC 6.3.5.3)

Like many other amidotransferases, phosphoribosylformylglycinamidine (FGAM) synthase PurL consists of two subunits, a glutamine amidotransferase of the Triad family [Zalkin, 1998 #433] and a synthetase.  The phyletic pattern of both FGAM synthase subunits is the same as that of PurF and PurD. In E. coli and many other -proteobacteria, as well as in yeast and other eukaryotes, these two subunits are fused in one polypeptide chain, whereas in most other bacteria and in archaea these two proteins are encoded by separate genes. In this latter case, FGAM synthase apparently requires an additional 80-aa subunit, referred to as PurS [Saxild, 2000 #918]. 

Phosphoribosylaminoimidazol synthetase (EC 6.3.3.1)

Phosphoribosylformylglycinamidine cyclo-ligase (AIR synthetase) PurM has the same phyletic pattern as PurF, PurD, and PurL. 

Phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21)

Phosphoribosylaminoimidazole AIR carboxylase (NCAIR synthetase) PurK is, like PurD, an ATP-grasp superfamily enzyme (see ♦3.3.2), which catalyzes ATP-dependent carboxy-lation of its substrate AIR. Unlike other enzyme of purine biosynthesis, PurK is not encoded in the genomes of A. fulgidus, C. jejuni, methanogens, and pyrococci (Fig. 8.6), so that the mechanism of AIR carboxylation in these organisms remains unknown.  In fact, this reaction can occur spontaneously at elevated temperatures in CO2-rich atmosphere, which could explain the absense of this enzyme in hyperthermophilic archaea. This explanation does not seem to work, however, for C. jejuni, suggesting the existence of a still unidentified alternative version of PurK (see [Meyer, 1999 #919; Galperin, 1999 #19] for discussion).

Phosphoribosylcarboxyaminoimidazole mutase

Phosphoribosylcarboxyaminoimidazole (NCAIR) mutase, previously thought to be a subunit of NCAIR synthetase, but recently demonstrated to be an indidual enzyme [Mueller, 1994 #920; Meyer, 1999 #919], has the typical phylogenetic pattern of purine biosynthesis enzymes PurF, PurD, and PurL. 
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Figure 8.6. Distribution of purine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

Phosphoribosylaminoimidazolesuccinocarboxamide synthase (EC 4.3.3.2) 

Phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase (PurC) contains a distinct version of the ATP-grasp domain.  In addition to the standard set of organisms that are capable of purine biosynthesis, SAICAR synthase is encoded in the genome of R. prowazekii.  It is hard to imagine what might be the function of this enzyme in this intracellular parasite, which lacks all other enzymes of purine biosynthesis.  The sequence of R. prowazekii PurC is closely related to the enzymes from other -proteobacteria but has at least three substitutions of amnio acid residue that are otherwise conserved in SAICAR synthases (EVK, unpublished observations). This might suggest that ricketssial SAICAR synthases might have lost its enzymatic activity and acquired another, perhaps regulatory function.

Adenylosuccinate lyase (EC 4.3.2.2)

Adenylosuccinate lyase (PurB) has the typical phyletic pattern of purine biosynthesis enzymes, with the addition of H. pylori. This is most likely due to the involvement of PurB in the conversion of IMP into AMP, the reaction that appears to be functional in H. pylori. 

AICAR transformylase (EC 2.1.2.3)

Phosphoribosylaminoimidazolecarboxamide (AICAR) formyltransferase (PurH) catalyzes transfer of a formyl residue from formyltetrahydrofolate to AICAR.  In every organism studied to date this protein is fused to the IMP cyclohydrolase in a bifunctional enzyme. AICAR transformylase comprises the C-terminal 300-aa portion of the PurH protein, whereas IMP cyclohydrolase occupies the N-terminal 200-aa region [Rayl, 1996 #921].  AICAR transformylase is encoded in almost the same set of organisms as all other purine biosynthesis enzymes, with the exception of A. fulgidus, which encodes only the IMP cyclohydrolase portion of PurH, and methanogens and pyrococci that do not encode either of these enzymes. 

IMP cyclohydrolase (EC 3.5.4.10)

IMP cyclohydrolase, which catalyzes the last step of purine biosynthesis, is fused to AICAR transformylase in every organism, except A. fulgidus, which does not have an AICAR transformylase at all, and Halobacterium sp., where AICAR transformylase domain is fused to PurN, a different folate-dependent GAR transformylase (see above). As noted above, methanogens and pyrococci do not encode recognizable IMP cyclohydrolase. 
Adenylosuccinate synthase (EC 6.3.4.4)


Conversion of IMP into AMP can occur in one step, catalyzed by the eukaryote-specific enzyme AMP deaminase (EC 3.5.4.6), or in two steps, as in most bacteria and archaea.  First, IMP is converted into adenylosuccinate by adenylosuccinate synthase PurA. In addition to the entire set of organisms that encode enzymes of IMP biosynthesis, PurA is also encoded in H. pylori.  The second step, conversion of adenylosuccinate into AMP, is catalyzed by adenylosuccinate lyase PurB, mentioned above, which has the same phyletic pattern as PurA. 

IMP dehydrogenase (EC 1.1.1.205)

Although the reverse reaction, catalyzed by GMP reductase (EC 1.6.6.8), occurs in one step, conversion of IMP into GMP takes two steps. First, IMP is oxidized into XMP by IMP dehydrogenase GuaB, a close paralog of GMP reductase, which, however, contains an ~120 amino acid insert, which consists of two CBS domains involved in allosteric regulation of the enzyme activity [Bateman, 1997 #922][Zhang, 1999 #1360].  Because CBS is a “promiscuous” domain, found in association with various proteins[Anantharaman, 2001 #1359], it has caused and continues to cause errors in automated genome annotation (see ♦5.???) [Galperin, 1998 #464]. Thus, at least twelve A. fulgidus proteins were annotated as IMP dehydrogenase or “IMP dehydrogenase-related” [Kyrpides, 1996 #550], whereas, ironically, IMP dehydrogenase appears not to be encoded in the A. fulgidus genome. With the exception of this archaeon, IMP dehydrogenase is encoded in almost every bacterial and archaeal genome sequenced to date, including A. pernix, C. pneumoniae, and B. burgdorferi, which do not encode any enzymes of IMP biosynthesis. 

GMP synthase (EC 6.3.5.2)

GMP synthase is another amidotransferase that consists of two subunits, a glutamine amidotransferase of Triad family [Zalkin, 1998 #433] and a synthetase subunit that belongs to the PP-loop superfamily of ATP pyrophosphatases [Bork, 1994 #465].  The phylogenetic pattern of both GMP synthase subunits is the same as that of IMP dehydrogenase, with the addition of A. fulgidus, i.e. this enzyme is also found in A. pernix, C. pneumoniae, and B. burgdorferi.  In bacteria, yeast and other eukaryotes, and in A. pernix, these two subunits are fused together in the same polypeptide, whereas, in other archaea, they are encoded by separate genes. 


The phyletic distribution of purine biosynthesis enzymes shows some of the same trends that have been noted before, i.e. non-orthologous gene displacement and increased loss of enzymes for the early steps of the pathway as compared to the late steps of this pathway. With the exception of several obligate parasites with very small genome sizes and Buchnera sp., most bacteria encode the whole set of purine biosynthesis enzymes; there is little doubt that they are all capable of IMP formation.  Based on their gene content, bacteria H. pylori, C. pneumoniae, and B. burgdorferi and the archaeon A. pernix are only capable of converting IMP into GMP; AMP formation in those organisms probably occurs through the activity of adenine phosphorybosyltransferase or some other mechanism. While Halobacterium sp. and Thermoplasma spp. encode all the enzymes of purine biosynthesis, other archaeal genomes appear to miss at least two pur genes.  Methanogens and pyrococci lack purK and purH genes, and A. fulgidus additionally lacks purN/purT and guaB, making it hard to judge whether purine biosynthesis pathway is functional in this organism.  Purine biosynthesis is much more likely to occur in methanogens and pyrococci, who would then have to harbor alternative versions of AICAR transformylase and IMP cyclohydrolase and, potentially, an alternative version of AIR carboxylase. Thus far, no obvious candidates for these activities have been identified by comparatie genome analysis of these organisms. It is amazing that, although purine biosynthesis has been intensely studied for over 50 years, comparative genomics reveals unsuspected gaps in our understanding of this pathway and may eventually lead to the discovery of novel enzymes.

8.4.  Amino Acid Biosynthesis

8.4.1.  Aromatic amino acids

8.4.1.1.  Common steps of the pathway

The biosynthetic pathways of phenylalanine, tyrosine, and tryptophane in bacteria and eukaryotes share common steps leading from phosphoenol-pyruvate and erythrose-4-phosphate to chorismate. Enzymes for most of those steps are encoded also in archaeal genomes. 

2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate synthase 

(EC 4.1.2.15)


Although 2-dehydro-3-deoxy-D-arabino-heptonate 7-phosphate (DAHP) synthase is found in E. coli in three different versions, AroF, AroG, and AroH, all these enzymes are close paralogs and represent the so-called microbial form of DAHP synthase. A different form of this enzyme was originally described in potato and Arabidopsis and designated the plant form [Dyer, 1990 #794; Keith, 1991 #793]. Subsequently, this form has been discovered in S. coelicolor and X. campestris [Walker, 1996 #792; Gosset, 2001 #1288]. This form is also encoded in a number of complete genomes and is the only DAHP synthase in M. tuberculosis, M. leprae, H. pylori, and C. jejuni (Fig. 8.7). Finally, B. subtilis , S. pyogenes and several other bacteria encode a third form of DAHP synthase, referred to as AroA(G), which is homologous to 3-deoxy-D-manno-octulosonate 8-phosphate synthase of E. coli [Bolotin, 1995 #791].  Remarkably, this third form is also found in T. maritima and in several archaea, such as P. abyssi, A. pernix, and Thermoplasma spp. (Fig. 8.7). Other archaea, such as A. fulgidus, M. jannaschii, and M. 
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Figure 8.7. Distribution of tryptophane biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

thermoautotrophicum, as well as the hyperthermophilic bacterium A. aeolicus do not encode either of these three forms and appear to synthesize 3-dehydroquinate by a different mechanism that does not include DAHP as an intermediate (see below). 

3-Dehydroquinate synthase (EC 4.6.1.3)

3-Dehydroquinate synthase is found in many bacteria and in some archaea.  Remarkably, the phyletic pattern of this enzyme exactly corresponds to the overlap of the phyletic patterns for the three forms of DAHP synthase: 

------y--d-l--efghsn-j----  COG0722  DAHP synthase

----------r----f----uj----  COG3200  DAHP synthase

---pkz--vd-lbc-----n---i--  COG2876  DAHP synthase

---pkzy-vdrlbcefghsnuj-i--  All forms of DAHP synthase   and

---pkzy-vdrlbcefghsnuj-i-- COG0337 3-dehydroquinate synthase

This correlation suggests that known form of 3-dehydroquinate synthase can account for the conversion of DAHP into 3-dehydroquinate in all the organisms with completely sequenced genomes and probably represents the only form of this enzyme. 

3-Dehydroquinate dehydratase (EC 4.2.1.10)

Two forms of 3-dehydroquinate dehydratase have been characterized and designated class I (encoded by aroD gene) and class II (encoded by aroQ or QUTE genes), repectively.  Taken together, these two enzymes completely cover the phylogenetic diversity of the organisms that encode 3-dehydroquinate synthase:

aompkzyq---lb-e----n---i--  AroD  COG0710 

------y-vdr-bcefghs-uj----  AroQ  COG0757

aompkzyqvdrlbcefghsnuj-i-- 3-dehydroquinate dehydratase 

---pkzy-vdrlbcefghsnuj-i-- 3-dehydroquinate synthase. 


Notably, dehydroquinate dehydratase (as well as most of the other enzymes of tryptophan biosynthesis) is found in several genomes that do not encode dehydroquinate synthase, indicating the existence of an alternative, still uncharacterized pathway of dehydroquinate formation in Halobacterium sp., A. fulgidus, M. jannaschii, and M. thermoautotrophicum, and A. aeolicus.

Shikimate 5-dehydrogenase (EC 1.1.1.25)

The last enzyme in the shikimate-producing part of the pathway, shikimate 5-dehydrogenase, is encoded in most completely sequenced bacterial (with the exception of rickettsiae, spirochetes and mycoplasmas) and archaeal genomes (with the exception of P. horikoshii).  In fact, the phyletic profile for shikimate 5-dehydrogenase coincides with the combined profile for the two forms of  3-dehydroquinate synthase:

aompkzyqvdrlbcefghsnuj-i--  All 3-dehydroquinate dehydratases 
aompkzyqvdrlbcefghsnuj-i--  COG0169 Shikimate dehydrogenase

Shikimate kinase (EC:2.7.1.71)


The typical form of shikimate kinase, found in bacteria and eukaryotes, are not encoded in any archaeal genome sequenced so far. Recently, a shikimate kinase of the GHMP superfamily has been described and experimentally studied in M. jannaschii [Daugherty, 2001 #609]. This enzyme is encoded in every archaeal genome, except P. horikoshii. Together, these two forms of shikimate kinase have the same phyletic pattern as 3-dehydroquinate dehydratase and shikimate dehydrogenase: 

------yqvdrlbcefghsnuj-i--  COG0703  Shikimate kinase 

aompkz--------------------  COG1685  Shikimate kinase 

aompkzyqvdrlbcefghsnuj-i--  Shikimate kinase (all forms).

5-enolpyruvylshikimate 3-phosphate synthase (EC 2.5.1.19)

Like shikimate dehydrogenase, 5-enolpyruvylshikimate 3-phosphate synthase (AroA) is found in just one enzymatic form with the same phyletic pattern as the former enzyme.

Chorismate synthase (EC 4.6.1.4)

The only known chorismate synthase (AroC) has the same phyletic pattern as shikimate dehydrogenase and 5-enolpyruvylshikimate 3-phosphate synthase.

8.4.1.2.  Tryptophane biosynthesis

After chorismate, the tryptophane biosynthetic pathway deviates from the pathways leading to phenylalanine and tyrosine. In the tryptophane branch, all the remaining enzymes have very similar phyletic patterns.

Anthranilate synthase  (EC 4.1.3.27) 

Anthranilate synthase and closely related para-aminobenzoate synthase consist of two components, the synthetase subunit and the glutamine amidotransferase subunit, which in most organisms are encoded by separate genes trpG (or pabA) and trpE (or pabB).  In E.coli, the trpG gene for glutamine amidotransferase subunit is fused to the trpD gene that encodes anthranilate phosphoribosyltransferase, the enzyme catalyzing the next step of the pathway. This sometimes leads to a confusion in nomenclature, with the trpG gene being referred to as trpD or as trpD_1.  The phyletic pattern for anthranilate synthase is the same as seen above for shikimate dehydrogenase, 5-enolpyruvylshikimate 3-phosphate synthase, and chorismate synthase, with the exception that both genes are missing in Chlamydiae.

Anthranilate phosphoribosyltransferase (EC 2.4.2.18) 

There is only one form of anthranilate phosphoribosyltransferase that shows almost the same phyletic pattern as anthranilate synthase. The only difference diversification in the existing set of genomes is the absence of trpD gene (as well as genes for the remaining steps of tryptophan biosynthesis) in the genome of Streptococcus pyogenes.  This probably means that genes annotated as trpG and trpE genes in S. pyogenes actually encode para-aminobenzoate synthase and have no role in tryptophan biosynthesis. 

N-(5'-phosphoribosyl)anthranilate isomerase (EC 5.3.1.24)

Phosphoribosylanthranilate isomerase is also represented by only one form with essentially the same phyletic pattern as anthranilate phospho-ribosyltransferase. Here again, the nomenclature is somewhat complicated because of a gene fusion in E. coli. The phosphoribosylanthranilate isomerase gene that, in most species, is referred to as trpF, in E. coli is fused to the trpC gene that encodes indole-3-glycerol phosphate synthase, the enzyme for the next step of the pathway. Therefore, in E. coli, the trpF gene is sometimes also referred to as trpC, which can lead to confusion.  The phyletic pattern of phosphoribosylanthranilate isomerase is essentially the same as that of other enzymes of tryptophan biosynthesis, with the only significant difference being the apparent absence of TrpF in Mycobacterium tuberculosis and M. leprae.  Another peculiarity in the phylogenomics of phosphoribosylanthranilate isomerase is the unusual distribution of this enzyme in different chlamydial species: while Chlamydia trachomatis and C. muridarum both harbor the trpF gene, C. pneumoniae does not.  This probably reflects the ongoing gene loss in the evolution of chlamydiae. 

Indole-3-glycerol phosphate synthase (EC 4.1.1.48)

Indole-3-glycerol phosphate synthase exists in a single form with the same phyletic pattern as anthranilate phosphoribosyltransferase.

Tryptophan synthase (EC 4.2.1.20)

Tryptophan synthase consists of two subunits, encoded by trpA and trpB genes. Their phyletic patterns are similar to that of anthranilate phosphoribosyltransferase, with the exception that, like in case of phosphoribosylanthranilate isomerase, trpA and trpB genes are found in Chlamydia trachomatis and C. muridarum, but not C. pneumoniae.  In the archaea A. fulgidus, M. thermoautotrophicum, P. abyssii, and A. pernix, tryptophan synthase beta chain TrpB is encoded by two paralogous genes, whereas other archaea encode either one or the other variant of TrpB.

8.4.1.3.  Phenylalanine and tyrosine biosynthesis

Chorismate mutase (EC 5.4.99.5) 

Chorismate mutase is involved in both phenylalanine and tyrosine biosynthesis. The most commonly known variant of chorismate mutase is found in E. coli in two paralogous forms fused with prephenate dehydratase in PheA and prephenate dehydrogenase in TyrA. In addition to these two forms, there are distantly related forms of chorismate mutase, found in i) yeast and ii) in B. subtilis, Synechocystis sp., Listeria spp. and some other bacteria. Although these forms of chorismate mutase show very little sequence similarity to each other, they all have the same 3D structure and can be recognized as homologs by PSSM-based searching against CDD or Pfam (♦1.3).  A comparison of the combined phyletic pattern of all these forms of chorismate mutase with that of chorismate synthase shows that, with the exception of P. abyssii and in Chlamydia spp., all organisms that produce chorismate are capable of converting it to prephenate. 

Prephenate dehydrogenase (EC 1.3.1.12)

Prephenate dehydrogenase TyrA, an enzyme of the tyrosine biosynthesis branch of the pathway, is found in a single form with almost the same phyletic pattern as chorismate mutase. The only exception is S. pyogenes that appears not to encode prephenate dehydrogenase. 

Prephenate dehydratase (EC 4.2.1.51)

Prephenate dehydratase, an enzyme of the phenylalanine biosynthesis branch of the pathway, is also represented by a single form in all known organisms. However, its phyletic pattern indicates the absence of this enzyme in S. pyogenes, H. pylori, and A. pernix, which are all capable of producing prephenate. 

Aromatic aminotransferase (EC 2.6.1.1, 2.6.1.5, 2.6.1.9, 2.6.1.57) 

There are several families of pyridoxal-phosphate-dependent aminotransferases that are capable of producing tyrosine and phenylalanine from, respectively, 4-hydroxyphenylpyruvate and phenylpyruvate. Although the best-studied tyrosine aminotransferase, typified by E. coli TyrB, has a relatively  narrow phyletic  distribution,  homologs  of  histidinol  phosphate aminotransferase and aspartate aminotransferase are encoded in every bacterial and archaeal genome except for spirochetes and mycoplasmas.  Thus, once phenylpyruvate and 4-hydroxyphenyl-pyruvate are synthesized, their transamination into, respectively, phenylalanine and tyrosine can be performed by all organisms whose genome sequences are currently available. 

8.4.1.4.  A summary on phylogenomics of aromatic amino acid biosynthesis

Because aromatic amino acid biosynthesis shares common steps with biosynthesis of ubiquinone, this pathway displays a stunning variety of alternative enzymes catalyzing the same biochemical reaction. This makes analysis of their phyletic patterns rather complicated, but, at the same time, allows one to draw some interesting conclusions.  First of all, most bacteria and archaea retain the complete set of genes for tryptophan biosynthesis.  The exceptions are the obligate archaeal heterotroph P. horikoshii and  obligate bacterial parasites, such as S. pyogenes, rickettsia, chlamydia, spirochetes and mycoplasmas, which apparently obtain tryptophan, just like many other nutrients, from other microbes and form the host, respectively.

Enzymes of the tyrosine biosynthesis pathway are encoded in almost as many complete genomes, with the conspicuous exception of P. abyssii.  One could speculate that, while tryptophan is rapidly degraded at 105oC (the optimal growth temperature of this organism), tyrosine is not, which alleviates the requirement for de novo synthesis.  These considerations could also explain the absence of phenylalanine biosynthesis in P. abyssii and A.. pernix.

The consistency of the phyletic patterns of the enzymes for the downstream stages of aromatic amino acid biosynthesis underscores the remaining problem at its early stages. Indeed, A. aeolicus and four archaeal species encode 3-dehydroquinate dehydratase and all the subsequent enzymes but do not encode either DAHP synthase or 3-dehydroquinate synthase: 

aompkzyqvdrlbcefghsnuj-i-- All forms 3-dehydroquinate dehydratase

---pkzy-vdrlbcefghsnuj-i-- All forms DAHP synthase

---pkzy-vdrlbcefghsnuj-i-- COG0337 3-dehydroquinate synthase
aom----q------------------ Missing 3-dehydroquinate synthase

It appears that these organisms produce 3-dehydroquinate via a different mechanism that does not include DHAP as an intermediate.  Using the COG phyletic pattern search tool, one could search for orthologous protein sets that are reperesented in those five genomes, but are missing in thermoplasmas, pyrococci, A. pernix, and T. maritime, all of which encode a DHAP synthase and a 3-dehydroquinate synthase. Such a search identified just four COGs, only one of which, COG1465, contained uncharacterized proteins. These proteins, orthologs of M. jannaschii MJ1249, were predicted to function as alternative 3-dehydroquinate synthases (MYG, unpublished).  This prediction seems to be further supported by the adjacency of the genes encoding COG1465 members AF0229 and VNG0310C to the aroC gene in the genomes of A. fulgidus and Halobacterium sp., respectively.  However, even if this prediction is correct, the exact nature of the precursor for 3-dehydroquinate and the mechanism of its biosynthesis in these organisms need to be elucidated experimentally.
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Figure 8.8. Distribution of phenylalanine and tyrosine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.4.2.  Arginine biosynthesis

N-acetylglutamate synthase (EC 2.3.1.1, 2.3.1.35),


The first step in arginine biosynthesis from glutamate is its acetylation, with either acetyl-CoA or acetylornithine utilized as donors of the acetyl group (Fig. 8.9). In E. coli and several other organisms, this reaction is catalyzed by the acetyltransferase ArgA that employs acetyl-CoA as the acetyl donor. In all proteobacteria that encode this enzyme, the argA gene is fused to the gene for N-acetylglutamate kinase, which catalyzes the next step of the pathway. Like in other such cases, confusion occasionally emerges, especially because the N-terminal kinase domain, which consists of about 300 amino acid residues, can make the C-terminal acetyltransferase domain almost invisible in BLAST outputs (see (2.4.4.5).


A different, unrelated N-acetylglutamate synthase (N-acetylornithine transferase, the argJ gene product) is encoded in B. subtilis, yeast, and many other organisms. This enzyme couples acetylation of glutamate with deacetylation of N-acetylornithine, which is the fifth step in arginine biosynthesis. This activity allows recycling of the acetyl group in the course of arginine biosynthesis. 

N-acetylglutamate kinase (EC 2.7.2.8)

Phosphorylation of N-acetylglutamate is catalyzed by the product of the argB gene, a kinase with the carbamate kinase-like fold. This enzyme is found in a wide variety of organisms, such that its phylogenetic pattern is even broader than the combined patterns of both enzymes that generate N-acetylglutamate: 

-------q-dr---efgh-n------ ArgA N-acetylglutamate synthase 

a-m---yqvdrlbc-f---n-j---- ArgJ  N-acetylornithine transferase 
a-m---yqvdrlbcefgh-n-j---- Both N-acetylglutamate synthetases 
a-m-kzyqvdrlbcefghsnuj---- ArgB  N-acetylglutamate kinase

However, N-acetylglutamate kinase is not encoded in the genomes of many parasitic bacteria, such as S. pyogenes, H. influenzae, H. pylori, chlamydiae, rickettsiae, spirochetes, and mycoplasmas. 

N-acetyl-gamma-glutamyl phosphate reductase (EC 1.2.1.38)
The enzyme that catalyzes the next step of the pathway, ArgC, has the same phyletic pattern as ArgB. In fact, in fungi, argB and argC genes are fused and encode a single bifunctional protein.

N-acetylornithine aminotransferase (EC 2.6.1.11) 


N-acetylornithine transaminase belongs to a large family of pyridoxal phosphate-dependent aminotransferases.  Exact substrate specificities of these enzymes are hard to predict from sequence alone, but argD genes often form operons with argB and argC, which helps in recognizing them. However, in the absence of operon organization, identification may be complicated, and therefore the phyletic pattern of this enzyme remains ambiguous.
N- acetylornithine deacetylase (EC 3.5.1.16) 

N-acetylornithinase belongs to a large family of closely related acetyl-transferases (deacylases), which is represented by two or more paralogs even in the relatively small genomes of H. influenzae, L. lactis, and S. pyogenes. Although proper assignment of substrate specificity in such a case is difficult, if not impossible, the few organisms that produce N-acetylornithine but lack the ArgJ-type N-acetylglutamate synthase offer an ample choice of candidates for the role of N-acetylornithinase.

Ornithine carbamoyltransferase (EC 2.1.3.6)


Ornithine carbamoyltransferase catalyzes the sixth step of arginine biosynthesis, conversion of ornithine into citrulline. Carbamoyl phosphate that serves as the second substrate of this reaction is provided by carbamoyl phosphate synthetase, which has been discussed above ((3.2.2). Ornithine carbamoyltransferase has a much wider phyletic distribution than other enzymes of arginine biosynthesis. This is probably due to the fact that it also catalyzes the reverse reaction, i. e. phosphorolysis of citrulline with the formation of ornithine and carbamoyl phosphate, which is part of the urea cycle.  Accordingly, ornithine carbamoyltransferase is found in humans and other higher eukaryotes, which have the urea cycle, but are incapable of arginine biosynthesis. 

Argininosuccinate synthase (EC 6.3.4.5)


Like ornithine carbamoyltransferase, argininosuccinate synthase participates in the urea cycle.  As a result, its phyletic distribution is also wider than that of the enzymes that catalyze early steps of arginine biosynthesis. This enzyme, too, is found in humans and in such bacteria as H. influenzae, which have all the urea cycle enzymes, but lack several enzymes of arginine biosynthesis.

Argininosuccinate lyase (EC 4.3.2.1)


Argininosuccinate lyase, the last enzyme of arginine biosynthesis, splits argininosuccinate into arginine and fumarate. Like the two preceding enzymes, it also participates in the urea cycle, and its phyletic pattern is nearly identical to that of argininosuccinate synthetase: 
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Figure 8.9. Distribution of arginine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.4.3. Histidine biosynthesis 

In contrast to the pathways of aromatic amino acid and arginine biosynthesis, histidine biosynthesis exhibits remarkable consistency of the phyletic patterns of all the enzymes involved (Fig. 8.10). While the first enzyme of the pathway, phosphoribosylpyrophosphate synthetase (EC 2.7.6.1), is also involved in the purine biosynthesis pathway (see above), nearly all the committed enzymes of histidine biosynthesis pathway have the same phyletic pattern, indicating that this pathway is encoded in the rgeat majority of complete microbial genome available so far. The exceptions are the heterotrophic archaea Thermoplasma spp., Pyrococcus sp., and A. pernix, and parasitic bacteria with small genomes: rickettsiae, chlamidiae, spirochetes, and mycoplasmas, as well as S. pyogenes and H. pylori (despite their larger genpomes). Remarkably, the aphid symbiont Buchnera sp., which has second-smallest genome available to date, encodes the complete set of histidine biosynthesis enzymes. 

There are several deviations from this common pattern. First, phosphoribosyl-ATP pyrophosphatase (EC 3.6.1.31) was not detected in A. fulgidus.  Since this organism harbors genes for all other enzymes of histidine biosynthesis, one should assume that this reaction in A. fulgidus is catalyzed by an unrelated pyrophosphatase. Indeed, A. fulgidus genome encodes several predicted pyrophosphatases of unknown specificity (COG1694) that could be good candidates for the role of missing phosphoribosyl-ATP pyrophosphatase.

Another deviation from the common pattern is the existence of at least two unrelated histidinol phosphatases (Fig. 8.10), one of which has been experimentally characterized in E. coli and the other in yeast and B. subtilis [Alifano, 1996 #798; le Coq, 1999 #797].  The latter form of this enzyme (COG1387) belongs to a large superfamily of PHP-type phosphohydrolases [Aravind, 1998 #178], which have common sequence motifs but clearly differ in their substrate specificity. A closer inspection of COG1387 shows that proteins from yeast, B. subtilis, B. halodurans, L. lactis, D. radiodurans, and T. maritima comprise a tight ortholgous set and can be confidently predicted to possess histidinol phosphatase activity. Other members of this COG are more distantly related to the experimentally characterized histidinol phosphatases from yeast and B. subtilis and might have other substrates. In addition, both forms of histidinol phosphatase are missing in Halobacterium sp. It appears likely therefore that there is yet another, so far unrecognized, form of histidinol phosphatase in Halobacterium sp., Thermoplasma spp., and other organisms. There are plenty of unassigned predicted hydrolases that could potentially have this activity.

Remarkably, a histidinol phosphatase-like protein is encoded in H. pylori (ortholog of the E. coli HisB, COG0241)which lacks all the other enzymes of histidine biosynthesis. This protein most likely represents a case of enzyme recruitment and functions as a phosphatase that hydrolyzes some other phosphoester.
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Figure 8.10. Distribution of histidine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.4.4.  Biosynthesis of branched-chain amino acids

To those readers who already got tired of numerous instances of non-orthologous gene displacement in metabolic pathways, biosynthesis of leucine, isoleucine, and valine offers a well-deserved reprieve. In the biosynthetic pathways for each of these amino acids, the only instance of alternative enzymes catalyzing the same biochemical reaction is the last step of, amination of -ketomethylvaleriate, -ketoisovaleriate, and -ketoisocaproate.  In addition to the branched-chain amino acid aminotransferase IlvE, this reaction can be catalyzed by alternative aminotransferases (Fig. 8.11). 
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Figure 8.11. Distribution of isoleucine/leucine/valine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.4.5. Proline biosynthesis

The best characterized pathway of proline biosynthesis is a three-step chain of reactions (Fig. 8.12) that converts glutamate into proline through consecutive action of glutamate kinase (ProB, EC 2.7.2.11), -glutamyl phosphate reductase (ProA, EC 1.2.1.41) and -pyrroline-5-carboxylate reductase (ProC, EC 1.5.1.2). This pathway is encoded in yeast, E. coli, B. subtilis, and in many other bacteria, including C. jejuni (but not H. pylori) and T. pallidum (but not B. burgdorferi).  This pathway, however, is not encoded in any archaea whose genomes have been sequenced so far.  Instead, Halobacterium sp., A. fulgidus, M. thermoautotrophicum, Thermoplasma spp., and A. pernix encode an unusual enzyme, ornithine cyclodeaminase (EC 4.3.1.12), which directly produces proline from ornithine. This enzyme, first discovered in tumor-inducing (Ti) plasmids of A. tumefaciens, was later found in pseudomonads and other bacteria [Dessaux, 1986 #975; Stalon, 1987 #976].  In plants, expression of this interesting enzyme stimulates flowering [Trovato, 2001 #979], whereas the mammalian ortholog of this enzyme is expressed in neural tissue, including human retina, and functions as -crystallin, a major component of the eye lens in marsupials [Kim, 1992 #977].  Although no such gene was detected in M. jannaschii, this archaeon, too, has been reported to possess ornithine cyclodeaminase activity [Graupner, 2001 #978].  

An interesting aspect of proline metabolism is that its biosynthesis and degradation both proceed through the -pyrroline-5-carboxylate intermediate. As a result, the proline biosynthetic pathway is sometimes confused with proline catabolism. Another complication in the analysis of proline metabolism is that, in E. coli and several other bacteria, the genes encoding proline dehydrogenase (EC 1.5.99.8) and -glutamate semialde-hyde dehydrogenase (EC 1.5.1.12), the first and second enzymes of proline catabolism, respectively, are fused, forming a bifunctional protein PutA.  In the COG database, these two domains of the PutA protein belong to two different COGs, COG0506 and COG1012 (Fig. 8.12).

In conclusion, proline metabolism is tightly interlinked with arginine metabolism.  Proline biosynthesis from glutamate can be reconstructed in all organisms with completely sequenced genomes with the exception of pyrococci, H. pylori, B. burgdorferi, chlamydiae, and mycoplasmas. The gene encoding ornithine cyclodeaminase in M. jannaschii [Graupner, 2001 #978] remains to be identified.  It can be expected to be a member of a different enzyme family, unrelated to the known ornithine cyclodeaminases (COG2423).  In any case, the mechanism of proline biosynthesis in M. jannaschii remains unknown and should involve still uncharacterized enzyme(s). 
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Figure 8.12. Distribution of proline biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.5.  Cofactor Biosynthesis

8.5.1. Thiamin 

Biosynthesis of cofactors (coenzymes), particularly thiamin, is a surprisingly poorly studied area of biochemistry. Although first thi mutations in E. coli have been characterized half a century ago, the complete least of thi genes has been established only in the 90-ies [Vander Horn, 1993 #1295], and the functions of their products have been resolved only in the last several years [Begley, 1999 #1294; Begley, 1999 #1293; Xi, 2001 #1292].  The scheme for thiamin biosynthesis in Fig. 8.13 has been drawn on the basis of E. coli data. One cannot help noticing that every enzyme shown on that picture has its own distinct phyletic pattern. This indicates the abundance of non-orthologous gene displacement cases among thiamine biosynthesis enzymes and suggests that different organisms might use different compounds as thiamin precursors. Thus, the apparent absence of ThiC in thermoplasmas, A. pernix, H. influenzae, and H. pylori, all of which encode ThiD, is a strong indication that some intermediate other than AIR is used as amino-methylhydroxy-methyl pyrimidine precursor in these organisms (Fig. 8.13). Thus, although all steps of the thiamin biosynthesis pathway have been resolved for E. coli [Begley, 1999 #1294], there are still ample opportunities for new discoveries in other organsms. 
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Figure 8.13. Distribution of thiamine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.5.2.  Riboflavine 

The riboflavin biosynthesis pathway is a challenging case where three out of seven rib genes studied in E. coli and B. subtilis do not have archaeal orthologs (Fig. 8.14). The archaeal variant of riboflavin synthase, the last enzyme of the pathway, has been identified and turned out to be unrelated to the bacterial enzyme [Eberhardt, 1997 #1289].  In contrast, archaeal versions for the first two enzymes of the pathway, GTP cyclohydrolase II (RibA) and pyrimidine deaminase (RibD1) remain unknown, so there remains a good chance of discovering new enzymes.
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Figure 8.14. Distribution of riboflavine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.5.3.  NAD 


The recent completion of the NAD biosynthesis pathway is discussed in the previous chapter (see (2.6.4). The original publications on this matter [Mushegian, 1999 #532; Mehl, 2000 #613; Begley, 2001 #608] offer a living proof of the thesis that many discoveries remain to be made with the help of computational-genomic methods, if only one knows where to look for them. Two forms of the respective enzymes and non-orthologous displacement are seen for each step of NAD biosynthesis (Fig. 8.15).
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Figure 8.15. Distribution of NAD biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.5.4. Biotin 

As is the case of many other pathways, the initial steps of biotin biosynthesis are poorly understood. The phyletic patterns of the four enzymes that catalyze conversion of pimeloyl-CoA into biotin are relatively consistent (Fig. 8.18), but the mechanisms of formation of pimelate (6-carboxyhexanoate) and pimeloyl-CoA are still largely obscure. 
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Figure 8.16. Distribution of biotine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

B. subtilis, A. aeolicus, and M. jannaschii encode an enzyme that makes pimeloyl-CoA from pimelate and CoA in a reaction that uses the energy of ATP hydrolysis to AMP and pyrophosphate [Ploux, 1992 #1291]. In contrast, pimeloyl-CoA synthetase from Pseudomonas mendocina belongs to the family of NDP-forming acyl-CoA synthetases [Binieda, 1999 #874; Sanchez, 2000 #883]. Neither of these two enzyme families has a member from Synechocystis sp., H. influenzae, H. pylori, C. jejuni, and several other bacteria, indicating existense of yet another enzyme for the synthesis of pimeloyl-CoA (or an entirely different way to make 7-keto-8-aminopelargonate). 

In spite of the similarity between the phylogenetic patterns of BioF, BioA, BioD, and BioB, one cannot help noticing that Synechocystis sp. lacks the bioA gene, suggesting that amination of 7-keto-8-aminopelargonate is catalyzed by a different aminotransferase. The absence of bioD and bioB genes in D. radiodurans makes one wonder whether this bacterium can synthesize biotin at all.

The enzyme catalyzing the last reaction in Figure 8.16, ligation of biotin to the biotin carboxyl carrier protein (or domain), has a much broader phyletic distribution than any of the biotin biosynthesis enzymes. This suggests that A. fulgidus, Halobacterium sp., Pyrococcus spp., L. lactis, S. pyogenes and many other organisms import biotin from the environment. Unfortunately, a biotin transport system has not been identified so far either.


The paucity of data on the enzymes of biotin biosynthesis and the organization of its uptake system should encourage active experimentation in this area. There definitely are novel enzymes and transporters yet to be discovered. 

8.5.5. Heme 

From the comparative-genomic point of view, the heme biosynthesis pathway is characterized by the following trends (Fig. 8.17: i) with the single exception of uroporphyrinogen III synthase (HemD), the enzymes from R. prowazekii and yeast (mitochondria) have identical phyletic patterns; b) all archaea, including the aerobes A. pernix and Halobacterium sp., produce siroheme, but not protoheme; c) non-orthologous displacement in the latter steps of the pathway, as opposed to the uniformity of all the early steps up to uroporphirinogen III. 
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Figure 8.17. Distribution of heme biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

8.5.6. Pyridoxine 


We conclude our survey of central metabolic pathways with the pyridoxin biosynthesis pathway, which, despite the recent efforts, still remains pretty much terra incognita. It is believed that the carbon backbone of the pyridoxine ring is formed of 4-hydroxythreonine (or its phosphate) and 1-deoxyxylulose (or its phosphate) with the nitrogen atom supplied by either glutamate (in the PdxAJ-catalyzed reaction), or glutamine (in the PDX1,PDX2-catalyzed reaction) [Ehrenshaft, 1999 #1301; Osmani, 1999 #1300; Tanaka, 2000 #1299; Drewke, 2001 #1298; Mittenhuber, 2001 #1297]. Again, it seems that some major discoveries remain to be made here.
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Figure 8.20. Distribution of pyridoxine biosynthesis enzymes in organisms with completely sequenced genomes.  All details as in Fig. 8.1. 

Summary and Outlook


Throughout this chapter, we have seen that central metabolism is the ultimate phylogenomic playground: this is where the formal logic (we may even sya, algebra) of phyletic patterns works best. Metabolic pathways are so amenable to this type of analysis because, if an organism encodes a significant fraction of the enzymes for a particular pathway, it is extremely likely that, in reality, is also has the enzymes for the rest of the steps. Therefore, candidates for enzymes to catalyze the missing steps may be sought for and, at least in some instances, found among uncharacterized orthologous sets (identified through COGs or otherwise) with phyletic patterns that are, at least in part, complementary to those for known enzymes for the given step (Table  8.1?).  So far, only very few of the computational predictions made by this approach have been tested experimentally, but in those studies that have been conducted, the success rate does not seem to be particularly low. Conversely, there are enigmatic cases where most of the enzymes of a given pathway are missing in an organism but one or two still stay around (by using this language, we imply loss of a pathway, which is indeed largely the case in parasites and heterotrophs, including ourselves). Most likely, these are cases of exaptation, where an enzyme that is no longer needed in its original metabolic capacity, but has found another job, thus saving itself from extinction. Elucidating these exapted functions seems to offer another interesting avenue of research. The major contribution of lineage specific gene loss in the evolution of metabolic pathways is beyond any doubt. Horizontal gene transfer is harder to demonstrate, but realistically, it appears certain that it also had a role. Indeed, it defies credibility to postulate that LUCA had every and each of the alternative forms of metabolic enzymes (and the corresponding reaction intermediates), the existence of which became known apparent through the comparative-genomic studies (as well as those, perhaps numerous ones that remain to be discovered). The relative contributions of gene loss and horizontal transfer hopefully will be bette understood through the application of algorithmic methods briefly outlined in Chapter 6.

8.6.  Further Reading 
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8.7.  Problems

1. List all the TCA cycle enzymes encoded in: 

a) Archaeoglobus fulgidus
b) Methanococcus jannaschii
c) Helicobacter pylori
How would you explain the presence of these particular enzymes and absence of the others?
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