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Abstract
	Fluorescence in situ hybridization (FISH) can be used to identify the copy numbers of several genes in hundreds of single cells from a solid tumor, data useful in characterizing heterogeneity and likely progression of individual tumors. No software package exists that takes advantage of such FISH data to study the progression of cancer from an evolutionary perspective.
	We present a new software package, FISHtrees, that offers two methods to infer models of tumor progression from FISH data. FISHtrees builds progression trees for samples collected across different tumor stages. A “consensus tree” module then can identify the subtrees shared by the models derived from a set of samples. FISHtrees is implemented in C++ and is publicly available to download. We illustrate FISHtrees usage by applying it to published data on cervical cancer, including paired samples from the primary tumor and a metastasis of the same patients.
	We provide examples of how FISHtrees can help users with FISH data to generate complex biological hypotheses on the evolutionary basis of cancer, thereby enabling the users to gain novel insight into the molecular mechanism of the disease.
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Introduction
	Solid tumors develop due to a process of mutations, typically including changes in the number of copies of genes or genomic regions. Comparisons of cells within the same tumor show extensive heterogeneity [Marusyk2010, Navin2010, Navin2011, Heselmeyer-Haddad2012]. Nevertheless, a process of evolution may be discernible by comparing regions [Navin2010, Subramanian2012] or cells [Navin2011, Martins2012] of a tumor. FISHtrees is a software package to model the progression of copy number changes in each tumor within a collection by organizing observed cells into trees of likely patterns of cell-to-cell evolution.
	FISH stands for “fluorescence in situ hybridization”, a method of labeling specific sequences of DNA in metaphase and interphase chromosomes. Such data are useful because they allow one to count the number of copies of a probe and thereby the gene/chromosome it represents in single cells [Heselmeyer-Haddad2012, Martins2012]. FISHtrees analyzes data on probe counts from a collection of cells in a set of tumors. The input to FISHtrees is three-dimensional; the first dimension is a set of files, one per sample. Each file is a two-dimensional matrix, where the columns are FISH probes. The rows represent cells. Entry (c, i) is the number of copies of probe i in cell c. Cells with identical probe counts are combined into a “count pattern.”
	FISHtrees can build two types of models, which we refer to as “ploidy-based” and “ploidyless”. The ploidy of a cell is the mode of the number of copies of the autosomes. The ploidy can be inferred using a probe on a chromosome unlikely to be gained or lost in the cancer being studied. In the data considered here, a probe for the centromere of chromosome 7 (CEP7) serves this purpose.
	Models constructed by FISHtrees start from the cell count pattern (2,2,2,…) for a normal cell at the root, and show how the observed cell count patterns could have arisen via a set of permitted copy number changes. For example, the edge (2, 2, 3, 1) → (2, 3, 3, 1) indicates an increase of 1 in the second probe count, which is a change often seen for oncogenes in a tumor. Most nodes represent cell count patterns observed in the data, but we allow “Steiner nodes”, representing unobserved patterns to be intermediate steps between observed patterns. In the ploidy-based models, an estimate of the ploidy is one probe, and the permitted operations are: a change of +1/-1 in any gene probe, a change of +1/-1 in the ploidy, a simultaneous change of +1/-1 in ploidy and a gene probe, and a duplication of all counts. In the ploidyless models, only gene probes are used, and the cost of an edge is the sum of copy number changes (rectilinear distance) between its endpoints.
	The insight that tumors evolve, combining clonal progression and new mutations [Nowell1976] has motivated many applications of phylogenetic methods and other mathematical modeling to study cancer (reviewed in [Attolini2009]). The present work derives most strongly from prior methods of Pennington et al. [Pennington2007] to infer phylogenies from FISH data. Several other approaches to tumor phylogenetics have, however, been developed. Some methods work with comparative genomic hybridization (CGH) data, which also measures gains and losses but averaged over entire populations of tumor cells [Navin2010, Subramanian2012, Desper1999, vonHeydebreck2004, Beerenwinkel2005, Gerstung2009, Tolliver2010].
	FISHtrees uses phylogenetic methods to infer tree models from single cell data. Although we focus here on analysis of multi-probe FISH data from cervical tumors [Wangsa2009], the application of multi-probe FISH to profile cellular heterogeneity of tumors was explored in several earlier studies. Among the earlier studies that were particularly influential on the present work, in part due to shared co-authors, are [Janocko2001,Heselmeyer-Haddad2002]. The feature that distinguishes more recent FISH studies is the capability to use more colors and hence more gene probes simultaneously [Heselmeyer-Haddad2012, Martins2012, Wangsa2009]. Alternatives to phylogenetics for inferring progression from FISH data include a combinatorial method [Martins2012]. That method distinguishes only copy number 2, gains, and losses of genes; it does not distinguish copy numbers 3, 4, … and it does not distinguish between copy numbers 1 and 0. FISHtrees distinguishes copy numbers 0 through MAX_COPY (default 9), and the ploidy-based method models changes in ploidy.
Implementation
	The FISHtrees software is implemented in C++ and is available from ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees. In constructing ploidy-based trees, FISHtrees uses the freely-available C++ library GLPK to solve integer linear programs. For all tree models, the outputs are printed in .dot format, so they can be visualized with GraphViz [Gansner2000].
	The ploidy-based method is a variant of the method proposed by Pennington et al. [Pennington2007]. That implementation was a prototype, implemented in multiple programming languages, to handle one gene probe and one centromere probe for a specific chromosome. Therefore, we implemented the method from scratch. Briefly, the major steps are:
1. For the ploidy p and each gene probe gi, construct a progression tree for the pair (p, gi) via iterative application of three steps repeated until the probabilities in step (i) converge.
(i) Assign a probability to each edge type (gain or loss of a single probe, change by 1 in the ploidy, simultaneous change by 1 in gene copy number and ploidy, or doubling of all probes) based on the fraction of edges of that type, as in [Pennington2007].
(ii) Connect the observed states for the pair (p, gi) into a graph using breadth first search and a heuristic to add Steiner nodes, if necessary, to make every state reachable from (2, 2). Weights on the edges depend on the probabilities from step (i).
(iii) In the graph of step (ii), compute a maximum-weight directed tree (a branching) rooted at (2, 2). By maximizing the weight, we prefer copy number changes that are more likely. For this step we used the branching algorithm of Karp [Karp1972], with code adapted from oncotrees [Desper1999].
2. Given single probe trees (p, gi) for each gene probe, merge trees into a consistent multi-probe tree, where each node is a state of the form (p, g1, g2, …,gd) for d gene probes. The merging is done by solving an integer linear program similar to that in [Pennington2007], but some constraints need to be relaxed so that there is always a feasible solution.
	In the ploidyless method, which has not been previously described, we use only gene probes, ignoring the ploidy of each cell. Each cell assayed on a set of d probes can be modeled as a point on a d-dimensional grid. An inferred tree edge e describing progression between two grid points x = (x1, x2, …. , xd) and y = (y1, y2, … , yd) has a number of mutations corresponding to the rectilinear distance w(e) = |x1-y1| + |x2-y2| + … + |xd-yd|. Identifying a progression tree connecting all observed cells with as few mutations as possible is equivalent to finding a tree among the occupied grid points with minimum rectilinear distance summed across tree edges, a problem known as the Rectilinear Steiner Minimum Tree (RSMT) problem [Hanan1966,Snyder1992]. The RSMT problem is known to be NP-complete [Garey1977] and thus, to have no efficient, exact algorithm. Snyder’s theorem [Snyder1992] constructs a point set that is guaranteed to contain all the Steiner nodes of an RSMT for a set of points S. We implemented an exact approach that considers each subset of possible Steiner nodes, Sk, of maximum cardinality k (k is user-defined) and builds a minimum spanning tree (MST) incorporating S and Sk. Finally, a minimum weight MST (ties broken arbitrarily) is returned as the ploidyless tree.
	We also developed a novel heuristic algorithm that adapts the median-joining algorithm of Bandelt et al. [Bandelt1999] to the RSMT problem using the theory of Hanan [Hanan1966] and Snyder [Snyder1992]. The method attempts to find a tree explaining the observed data with the minimum possible numbers of mutations summed over all edges in the tree. The method begins by constructing a minimum spanning network, corresponding to the union of edges in all MSTs. It then enumerates triplets of nodes (u,v,w) in which at least two pairs are connected in the network, followed by enumerating possible median nodes, consisting of combinations of coordinate values of u, v, and w. It tests whether introducing the given possible median as a Steiner node reduces the cost of the MST. If so, then the median node is added and the process is continued until no additional median node reduces the cost of the minimum-cost spanning tree. We developed some inequalities to quickly eliminate some of the exponentially many possible Steiner node sets from consideration.
Results and Discussion
	To illustrate the usage of FISHtrees we analyzed data from a collection of 47 cervical cancer samples [Wangsa2009]. We focused on 32 samples that are paired – one from the primary tumor and one from a metastasis – from 16 patients. Copy numbers were counted by FISH for the centromere probe CEP7, and four gene probes: LAMP3 [Kanao2005], PROX1 [Wigle1999], PRKAA1 [Huang2006], and CCND1 [Fu2004], which is amplified in many solid tumors. After filtering the count patterns for likely cut nuclei as described previously [Heselmeyer-Haddad2012], the number of cells per sample had a mean of 242 (range: 214-250) and the number of count patterns had a mean of 113 (46-213).
	Tumor phylogenetic trees generated by FISHtrees allow formulation of hypotheses that enables better understanding of the evolutionary mechanism that drives different stages of cancer. Sample output trees from FISHtrees are shown in Supplementary Figures S1-S8. Some of these trees have many nodes, due to the high heterogeneity in the tumor, and are therefore best viewed in a format where one can zoom in or out. We give two examples of analyses (one in Table 1 and one in Figure 1) for which the topology of the trees can give insight into the mechanistic basis of the disease.
	For the examples in this section, we built phylogenetic trees using the heuristic ploidyless method for primary and metastatic stage trees. Nodes that are directly connected to the root represent increase and decrease of one copy in each probe. For the four gene probes in the cervical cancer dataset, the eight count patterns for the children of the root node are {(1,2,2,2), (2,1,2,2), (2,2,1,2), (2,2,2,1), (2,2,2,3), (2,2,3,2), (2,3,2,2), (3,2,2,2)}. We counted the total number of cells represented in the subtrees rooted under each of these eight nodes. The resulting eight-dimensional vectors for each primary-metastasis pair were compared by a chi-square test using an 8x2 contingency table to test the null hypothesis of independence of primary and metastasis stage samples. The range of the p-values for the chi-square tests was 1.47E-70 to 3.69E-5 (Table 1). That all 16 p-values are significant suggests that distinct evolutionary pressures act on growth in the primary tumor versus the metastasis. Further investigation of the subtrees may reveal patterns of mutations that influence selection and tumor progression.
	To illustrate the difference between the dynamic views of relationships among count patterns offered by the trees relative to the static snapshot offered by raw probe counts, we plot the mean increase and decrease in copy number of each gene for 16 patients measured from cell count data (Figure 1(A)) and that from tree edge information (Figure 1(B)). In the case of cell count data, we have aggregated all 16 patients’ primary and metastasis information separately, left out the all-diploid cells, and calculated the mean deviation from diploid for each gene probe. For tree-based calculation of gene gain/loss, we have measured the net gain or loss of each gene summed over all trees generated by FISHtrees. From Figure 1(A), we can see that the mean gene gain/loss using cell counts shows almost no copy number change of PROX1 in the metastatic case and shows loss of PRKAA1 in this advanced stage of cancer. There is some heterogeneity as 11 of the 16 metastatic samples have an average PRKAA1 copy number < 2, while 5 samples have average copy number > 2. The edge count data in Figure 1(B), on the other hand, shows a mean gain of both genes in the metastatic stage, which is expected since PROX1 and PRKAA1 have been reported as gained in previous studies, as summarized in [Wangsa2009].
Conclusions
	FISHtrees implements two different methods to infer progression of different stages of tumors from FISH data. The output trees make it possible to visualize the progression of copy number changes. The topology of the trees generated by FISHtrees enables formulating hypotheses that can help better understand the selection pressure working on different stages of cancer. The graphs computed by the consensus tree module make it possible to visualize which cell count patterns (nodes) and copy number changes (edges) are shared or not shared among different samples from the same patient.
Availability and Requirements
	FISHtrees is implemented in C++ and is freely available as source code from ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees. For the ploidy-based tree module, FISHtrees uses the freely available library GLPK. The trees and graphs output by FISHtrees can be visualized with the freely available software GraphViz.
List of Abbreviations Used
FISH: fluorescence in situ hybridization
RSMT: rectilinear Steiner minimum tree
Supporting Information
Figure S1 Phylogenetic tree showing progression of primary stage cervical cancer in one patient P.
Figure S2 Phylogenetic tree showing progression of metastatic cervical cancer in one patient P.
Figure S3 Union graph for comparing phylogenetic trees from primary and metastatic stage samples for patient P.
Figure S4 Consensus graph for comparing phylogenetic trees from primary and metastatic stage samples for patient P.
Figure S5 Phylogenetic tree showing progression of primary stage cervical cancer in patient P.
Figure S6 Phylogenetic tree showing progression of metastatic cervical cancer in patient P.
Figure S7 Union graph for comparing phylogenetic trees from primary and metastatic stage samples for patient P.
Figure S8 Consensus graph for comparing phylogenetic trees from primary and metastatic stage samples for patient P.
Author Contributions
RS and AAS conceived the project. SAC and W-JL implemented the software with help from RS and AAS. DW, KH-H, and TR provided data. KH-H, TR, and SES provided expert input and advice. SAC, RSS, and AAS wrote the manuscript. All authors read and approved the final version of the manuscript.
Acknowledgment

References
1. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta (BBA)-Reviews on Cancer 1805: 105-117.
2. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, et al. (2010) Inferring tumor progression from genomic heterogeneity. Genome Res 20: 68-80.
3. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, et al. (2011) Tumour evolution inferred by single-cell sequencing. Nature 472: 90-94.
4. Heselmeyer-Haddad K, Berroa Garcia LY, Bradley A, Ortiz-Melendez C, Lee W-J, et al. (2012) Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity, yet conserved genomic imbalances and gain of MYC during progression. Am J Pathol 181: 1807-1822.
5. Subramanian A, Shackney S, Schwartz R (2012) Inference of tumor phylogenies from genomic assays on heterogeneous samples. J Biomed Biotechnol 2012: article 797812.
6. Martins FC, De S, Almendro V, Gönen M, Park SY, et al. (2012) Evolutionary pathways in BRCA1-associated breast tumors. Cancer Discov 2: 503–511.
7. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194: 23–28.
8. Attolini CS-O, Michor F (2009) Evolutionary theory of cancer. Ann N Y Acad Sci 1168: 23-51.
9. Pennington G, Smith CA, Shackney S, Schwartz R (2007) Reconstructing tumor phylogenies from heterogeneous single-cell data. J Bioinform Comp Biol 5: 407-427.
10. Desper R, Jiang F, Kallioniemi O-P, Moch H, Papadimitriou CH, et al. (1999) Inferring tree models of oncogenesis from comparative genomic hybridization data. J Comp Biol 6: 37–51.
11. von Heydebreck A, Gunawan B, Füzesi L (2004) Maximum likelihood estimation of oncogenetic tree models. Biostatistics 5: 545–556.
12. Beerenwinkel N, Rahnenführer J, Kaiser R, Hoffmann D, Selbig J, et al.: Mtreemix (2005) a software package for learning and using mixture models of mutagenetic trees. Bioinformatics 21: 2106-2107.
13. Gerstung M, Baudis M, Moch H, Beerenwinkel N (2009) Quantifying cancer progression with conjunctive Bayesian networks. Bioinformatics 25: 2809-2815.
14. Tolliver D, Tsourakakis C, Subramanian A, Shackney S, Schwartz R (2010) Robust unmixing of tumor states in array comparative genomic hybridization data. Bioinformatics 26: i106-i114.
15. Wangsa D, Heselmeyer-Haddad K, Ried P, Eriksson E, Schäffer AA, et al. (2009) FISH markers for detection of cervical lymph node metastases. Am J Pathol 175: 2637–2645.
16. Janocko LE, Brown KA, Smith CA, Gu LP, Pollice AA, et al. (2001) Distinctive patterns of Her-2/neu c-myc, and cyclin D1 gene amplification by fluorescence in situ hybridization in primary breast cancers. Cytometry 46: 136-149.
17. Heselmeyer-Haddad K, Chaudhri N, Stoltzfus P, Cheng JC, Wilber K, et al. (2002) Detection of chromosomal aneuploidies and gene copy number changes in fine needle aspirates is a specific, sensitive, and objective genetic test for the diagnosis of breast cancer. Cancer Res 62: 2365-2369.
18. Gansner ER, North SC (2000) An open graph visualization system and its applications to software engineering. Software -- Pract Exp 30: 1203-1233.
19. Karp RM (1972) A simple derivation of Edmonds’ algorithm for optimum branchings. Networks 1: 265-272.
20. Hanan M (1966) On Steiner’s problem with rectilinear distance. SIAM J Appl Math 14: 255-265.
21. Snyder TL (1992) On the exact location of Steiner points in general dimension. SIAM J Comput 21: 163-180.
22. Garey MR, Johnson DS (1977) The rectilinear Steiner tree problem is NP-complete. SIAM J Appl Math 32: 826-834.
23. Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37-48.
24. Kanao H, Enomoto T, Kimura T, Fujita M, Nakashima R, et al. (2005) Overexpression of LAMP3/TSC403/DC-LAMP promotes metastasis in uterine cervical cancer. Cancer Res 65: 8640-8645.
25. Wigle JT and Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98: 769–778.
26. Huang FY, Chiu PM, Tam KF, Kwok YKY, Lau ET, et al. (2006) Semi-quantitative fluorescent PCR analysis identifies PRKAA1 on chromosome 5 as a potential candidate cancer gene of cervical cancer. Gynecol Oncol 103: 219–225.
27. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145: 5439-5447.
28. Chowdhury SA, Shackney SE, Heselmeyer-Haddad K, Ried T, Schäffer AA, et al. (2013) Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29: i189-i198.
29. Hou Y, Song L, Zhu P, Zhang B, Tao Y, et al. (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148: 873-885.
30. Xu X, Hou Y, Yin X, Bao L, Tang et al. (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148: 886-895.
31. Tao Y, Ruan J, Yeh S-H, Lu X, Wang Y et al. (2011) Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc Natl Acad Sci USA 108: 12042-12047.
32. The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumors. Nature 490: 61-70.


Table
Table 1. P-values from chi-square tests comparing the number of descendants in the eight children of the root in the tree for the primary tumor versus the tree for the metastatic tumor in the same patient; this analysis uses trees from the ploidyless method.
	Patient ID
	Chi-Square Test p-value

	1
	1.91E-15

	2
	4.17E-20

	3
	1.14E-11

	4
	4.39E-12

	5
	2.52E-12

	6
	3.69E-05

	7
	9.78E-06

	8
	1.47E-70

	9
	2.99E-37

	10
	1.99E-69

	11
	3.90E-14

	12
	4.83E-50

	13
	2.67E-50

	14
	2.67E-50

	15
	1.22E-11

	16
	1.76E-40




Figure Legends
Figure 1. Increase and decrease in copy number count of LAMP3, PROX1, PRKAA1 and CCND1 across 16 patients, calculated using (A) average of cell count data and (B) net tree edge changes. The units on the y-axis differ in the two Figure panels due to the nature of the data used in the two ways of evaluating average changes.
Figure S1. Phylogenetic tree showing progression of primary stage cervical cancer in one patient P. The tree is built from single-cell copy number data using the ploidy-based approach implemented in FISHtrees. Each node in the tree represents a copy number profile of the four gene probes LAMP3, PROX1, PRKAA1 and CCND1. The paired numbers next to each probe symbol represent the ploidy and the count for that gene probe, respectively. Nodes with solid borders represent cells present in the collected sample, while nodes with dotted borders represent inferred Steiner nodes. Green and red edges model gene gain and gene loss respectively, while blue and yellow edges model chromosome gain and chromosome loss respectively. Purple edges model simultaneous chromosome and gene gain events. The weight value on each edge connecting two nodes x and y describes the inferred probability of copy number changes in the progression of cellular states from x to y; in this example, all the edge probabilities are very low because each cell count pattern is rare. The two weight values on each node represent the observed and inferred fraction of the corresponding cell state in the sample and population, respectively.
Figure S2. Phylogenetic tree showing progression of metastatic cervical cancer in one patient P. The tree is built from single-cell copy number data using the ploidy-based approach implemented in FISHtrees. The pair of numbers next to each probe symbol represents the ploidy and the count for that gene probe, respectively. Nodes with solid borders represent cells present in the collected sample, while nodes with dotted borders represent inferred Steiner nodes. Green and red edges model gene gain and gene loss respectively, while blue and yellow edges model ploidy gain and ploidy loss respectively. Purple edges model simultaneous ploidy and gene gain events. The weight value on each edge connecting two nodes x and y describes the inferred probability of copy number changes in the progression of cellular states from x to y; in this example, all the edge probabilities are very low because each cell count pattern is rare. The two weight values on each node represent the observed and inferred fraction of the corresponding cell state in the sample and population, respectively.
Figure S3. Union graph for comparing phylogenetic trees from primary and metastatic stage samples for patient P. Nodes and edges in the consensus graph are unions of nodes and edges in the single-sample primary and metastatic trees in Figure S1 and Figure S2 respectively. Nodes and edges that are solid are in both trees, while dotted nodes and edges are in one input tree only.
Figure S4. Consensus graph for comparing phylogenetic trees from primary and metastatic stage samples for patient P. Nodes and edges in the consensus graph are intersections of nodes and edges in the single-sample primary and metastatic trees in Figure S1 and Figure S2 respectively. 
Figure S5. Phylogenetic tree showing progression of primary stage cervical cancer in patient P. The tree is built from single cell-copy number data using the ploidyless heuristic approach implemented in FISHtrees. Each node in the tree represents a copy number profile of the four gene probes LAMP3, PROX1, PRKAA1 and CCND1. Nodes with solid borders represent cells present in the collected sample, while nodes with dotted borders represent inferred Steiner nodes. Green and red edges model gene gain and gene loss respectively. The weight value on each edge connecting two nodes x and y is the rectilinear distance between the states of x and y. The weight on each node describes the fraction of cells in the sample with the particular copy number profile modeled by that node; Steiner nodes get weight 0.
Figure S6. Phylogenetic tree showing progression of metastatic cervical cancer in patient P. Tree is built on single cell copy number data using the ploidyless heuristic approach implemented in FISHtrees. Nodes with solid borders represent cells present in the collected sample, while nodes with dotted borders represent inferred Steiner nodes. Green and red edges model gene gain and gene loss respectively. The weight value on each edge connecting two nodes x and y is the rectilinear distance between the states of x and y. The weight on each node describes the fraction of cells in the sample with the particular copy number profile modeled by that node.
Figure S7. Union graph for comparing phylogenetic trees from primary and metastatic stage samples for patient P. Nodes and edges in the consensus graph are unions of nodes and edges in the single-sample primary and metastatic trees in Figure S5 and Figure S6 respectively. Nodes and edges that are solid are in both trees, while dotted nodes and edges are in one input tree only.
Figure S8. Consensus graph for comparing phylogenetic trees from primary and metastatic stage samples for patient P. Nodes and edges in the consensus graph are intersections of nodes and edges in the single-sample primary and metastatic trees in Figure S5 and Figure S6 respectively. 
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